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Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital
form, we embarked upon a program in 1992 to develop a four-dimensional probabilistic atlas and reference
system for the human brain. Through an International Consortium for Brain Mapping (ICBM) a dataset
is being collected that includes 7000 subjects between the ages of eighteen and ninety years and including
342 mono- and dizygotic twins. Data on each subject includes detailed demographic, clinical, behavioural
and imaging information. DNA has been collected for genotyping from 5800 subjects. A component of the
programme uses post-mortem tissue to determine the probabilistic distribution of microscopic cyto- and
chemoarchitectural regions in the human brain.This, combined with macroscopic information about struc-
ture and function derived from subjects in vivo, provides the ¢rst large scale opportunity to gain meaningful
insights into the concordance or discordance in micro- and macroscopic structure and function. The philo-
sophy, strategy, algorithm development, data acquisition techniques and validation methods are described
in this report along with database structures. Examples of results are described for the normal adult human
brain as well as examples in patients with Alzheimer’s disease and multiple sclerosis. The ability to quantify
the variance of the human brain as a function of age in a large population of subjects for whom data is also
available about their genetic composition and behaviour will allow for the ¢rst assessment of cerebral geno-
type^phenotype^behavioural correlations in humans to take place in a population this large. This
approach and its application should provide new insights and opportunities for investigators interested in
basic neuroscience, clinical diagnostics and the evaluation of neuropsychiatric disorders in patients.
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1. INTRODUCTION

The nervous system is unique among human body
systems in its spatial and temporal organization. The
central nervous system is divided into highly specialized

regions that have unique properties in terms of cell types,
connections and organization. The functions of these
units vary with time, spanning the gamut from the
millennia of evolution to the millisecond choreography of
neurophysiological events. This temporal and spatial
specialization is well suited to the application of infor-
matics techniques. In fact, such methods will be required
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as the basis from which to begin to understand and
organize the ever increasing amount of neuroscienti¢c
information that is accumulating about this, the most
complicated system known. For each brain region and for
every attribute ascribed to it, data must be organized in a
rational fashion that takes advantage of the brain’s
inherent neuroanatomical organization, spatial segrega-
tion and the variance among individuals that exist for
these regions. What is ultimately required is a multidi-
mensional database organized with three dimensions in
space and one in time, along with a seemingly in¢nite
number of attributes referable to these four physical
dimensions.

As in geography, neuroscience requires accepted maps,
terminologies, coordinate systems and reference spaces to
allow accurate and e¡ective communication within the
¢eld and to allied disciplines. Geographical atlases of the
earth have advantages over atlases that are anatomical in
nature. Earth atlases can assume a relatively constant
physical representation over thousands of years. On that
single, stable construct, an in¢nite number of abstract
representations of features can be overlaid. For earth
maps, such features might include rainfall, temperature,
population density or crime rates.

Unlike geographical atlases, anatomical atlases cannot
assume a single, constant physical reality. This is true
despite the fact that standard atlases that utilized single
subjects minimize this fundamental problem. Anatomical
atlases must ¢rst deal with the fact that there is a potent-
ially in¢nite number of physical realities that must be
modelled to obtain an accurate, probabilistic representa-
tion of the entire population. Upon this anatomical
representation one can then overlay features in a fashion
analogous to that described for earth atlases (Mazziotta
1984). In the brain, such features might include cyto-
architecture, chemoarchitecture, blood £ow distributions,
metabolic rates, ligand binding, behavioural and patholo-
gical correlates, and many others. Like earth maps, brain
maps can vary in time frames ranging from milliseconds
(e.g. electrophysiological events) to minutes (e.g. skill
acquisition), years (e.g. development, maturation, ageing),
or millennia (i.e. evolution).

Classical atlases of the human brain or other species
have been derived from a single brain, or brains from a
very small number of subjects, and have employed simple
scaling factors to stretch or constrict a given subject’s
brain to match the atlas. The result is a rigid and often
in£exible system that disregards useful information about
morphometric (i.e. dimensionality) and densitometric
(i.e. intensity) variability among subjects.

This paper reviews the rationale for and development
of a probabilistic atlas and reference system of the human
brain derived from a large series of subjects, representa-
tive of the entire species, with retention of information
about variability. The atlas includes structural as well as
functional information. Such a project must take on the
problems inherent in dealing with a variable biological
structure and function but, when successful, provides a
system that is realistic in its complexity, has de¢ned
accuracy and errors, and that, as a bene¢t, contributes
new neurobiological information. Such a strategy will
also spawn atlases of other species as well as human
atlases of pathological conditions such as Alzheimer’s

disease, autism, schizophrenia, multiple sclerosis (MS)
and many others. These disease-speci¢c atlases can then
be used to demonstrate the natural history of disease
progression and will ¢nd utility in clinical trials where
experimental therapies can be examined for their impact
on disease progression using an automated, objective and
quanti¢able reference atlas of the natural history of the
disease state.

2. MOTIVATION FOR DEVELOPING A PROBABILISTIC

HUMAN BRAIN ATLAS

The relationship between structure and function in the
human brain, at either a macro- or microscopic level, is
complex and poorly understood. Furthermore, we are not
proposing to unravel this complexity with the data
collected in the context of building this atlas. Rather, we
will continue to develop a probabilistic framework in
which appropriate datasets can be entered, across an
ever-increasing number of modalities, between subjects,
laboratories and experiments such that, in time, the
aggregate data from populations will provide even greater
(in both quality and quantity) insights into this important
relationship. Our perspective on brain function is
typically equated with the methods available to measure
it. For the tomographic brain imaging techniques, the
results produce macroscopic estimates of where gross
functional changes (typically of a haemodynamic nature)
are occurring. Electromagnetic techniques can provide
direct information about when these events occur, and
indirect information about where. The development of a
probabilistic reference system and atlas for the human
brain simply provides the framework in which to place
these ever-accumulating data sets in a fashion that allows
them to be related to one another and that begins to
provide insights into the relationship between micro- and
macroscopic structure and function.

(a) Growth of neuroscience and lost opportunities.
The growth of neuroscience in the last 25 years has been

extraordinary. Annually, over 20 000 individuals attend
the meeting of the Society for Neuroscience in the USA. At
that meeting, over 40 000 papers have been presented in
the last three years. Brain mapping and neuroimaging
have witnessed a similar exponential rise in interest, output
and productivity, although on a smaller scale. Throughout
the neuroscience community, there is a general frustration
with the volume of data that is generated and its relative
inaccessibility in forms other than narrative text. Consider,
for example, that over 13 000 Society for Neuroscience
abstracts are published in hard copy and electronically
each year. Faced with such a staggering volume of informa-
tion, the individual neuroscientist typically retreats to his
or her small scienti¢c niche, resulting in ever-increasing
specialization and isolation within the ¢eld.

At the same time, funding for neuroscience research
has a limited return on its investment in that only a small
fraction of raw data that is collected through such funds is
analysed fully, and far less is interpreted and published.
Even when published, narrative formats require arduous
comparisons across experiments, methods and species.

If there were a system that provided a logical and
organized means by which to maintain data from
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meetings, individual experiments or the ¢eld as a whole,
referenced to the anatomy of the brain, the species and
the stage in development or duration of a pathological
process, highly automated, content-based queries would
vastly improve access, allow immediate comparisons
among experiments and laboratories, provide a manage-

able format to assess new data at meetings or through
periodical publications, provide for electronic experi-
ments and hypothesis generation using the data of others
to test theories, and greatly increasing the value of money
spent on neuroscience research. Such an outcome requires
sophisticated neuroinformatics tools, dedicated scientists
committed to the successful completion of such a project
in a practical fashion, and a paradigm shift in the
sociology of neuroscientists with regard to information
sharing (Koslow 2000). Nevertheless, the bene¢ts of such
an approach are enormous on their own, and of even
greater value if one extrapolates the current situation to
even greater numbers of neuroscientists and datasets in
the future.

(b) Data su¡ocation
As the quality of neuroscienti¢c data improves, so too

does its magnitude. As spatial resolution in imaging data
changes by one order of magnitude in one dimension, the
volume of data points increases by a factor of 1000. In vivo
imaging instruments are now routinely capable of pro-
ducing 1mm3 resolution elements whereas microscopic
and ultrastructural studies achieve spatial resolutions
1000^100 000 times better. If one considers that 50 000^
75 000 genes code for proteins of relevance to the human
nervous system at some point during the life span, one
can see the impact of assaying and storing such informa-
tion across a range of spatial resolutions, as demonstrated
in ¢gure 1. Current genomic technology, and future
advances in it, make feasible the ability to generate vast
amounts of genetic information. All of these data are in
search of an organizational home referenced to the loca-
tion of the sample in neuroanatomical terms and the time
frame of the sample as a function of the development of
the organism. Once again, the brain’s architecture
becomes the most appropriate and intuitively sensible
structure in which to organize such data so as to optimize
correlations between biologically related datasets. While
the remainder of this article focuses on imaging data of
the human brain, it is important to note the magnitude
of the information management problem for neuroscience
as a whole.

(c) Data integration
To demonstrate the practical uses of the probabilistic

reference system, an example is taken from actual
experience, namely, an experiment performed by Watson
and colleagues (Watson et al. 1993) to identify the visual
motion area of the human brain (i.e. V5 or MT)
(Ungerleider & Desimone 1986) using relative cerebral
blood £ow (CBF) (Mazziotta et al. 1985; Fox & Mintun
1989) measured with positron emission tomography
(PET) (¢gure 2). In the experiment, each subject had
multiple PET^CBF studies in two states, the ¢rst viewing
a stationary pattern of targets and the second with the
targets moving. The signi¢cant di¡erence between the
datasets collected in these two states (Friston et al. 1991)
was then superimposed on magnetic resonance imaging
(MRI) data using the automated image registration
(AIR) algorithm (Woods et al. 1992, 1993). The result of
this experiment demonstrated consistent bilateral activa-
tions of the dorsolateral, inferior occipital cortex in each
subject. Furthermore, a consistent relationship between
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Figure 1. The magnitude of neuroinformatics data for the
human brain. While there are a number of assumptions in
this illustration, the orders of magnitude are realistic and
enormous. They depict what would be involved in developing
an organized data structure that combines location in the
human brain with gene expression maps. (a) This example
assumes that approximately 50 000 genes may be expressed in
any three-dimensional region (voxel) of the brain at any given
time during development. The typical human male brain is
1500 cm3 in volume. Based on the spatial resolution used to
determine gene expression (ranging from 1 cm3 to 103 mm3),
the number of data points ranges from 75 million to 75
thousand trillion. Keep in mind that this is what is required
to manage the data from just one brain at a given point in
time. (b) If one uses these same assumptions and the range
of resolutions noted in (a), the range of data magnitudes for
a series of brains collected across a population with a
representative of each age from birth to age 100 years old
results in dataset magnitudes that range from 109 to 1023.
These truly astronomical orders of magnitude will require
innovative, practical neuroinformatic data structures that
allow the referencing of such information as a function of
both location and time.



the site of increased blood £ow and the frequently
observed ascending limb of the inferior temporal sulcus
(Ono et al. 1990) was found (¢gure 2a). Because the
investigators were knowledgeable about temporo-occipital
anatomy and physiology, they recognized that this
location had also been identi¢ed by Flechsig (Flechsig
1920) as a portion of the human cerebral cortex (Flechsig
Field 16) that is myelinated at birth (Bailey & von Bonin
1951) (¢gure 2b). These observations have been repeatedly
con¢rmed by independent laboratories demonstrating the
human V5 (Zeki et al. 1991) areas as a frequently
detectable and robust functional landmark at the
temporo-occipital junction (Dumoulin et al. 2000).

Now envision this experiment performed using neuro-
informatics tools previously developed or proposed for the
probabilistic reference system. Prior to performing the V5
PETexperiment, each subject would perform a `functional
reference battery’ of tasks, thereby providing functional
landmarks throughout the brain. Following the experi-
ment, anatomical warping and segmentation tools would
be used to segment and label the anatomical regions of the
brain automatically for each subject. Alignment and regis-
tration by functional landmarks would show the e¡ects of
functional registration on macroscopic anatomy. Func-
tional alignment and registration using the V5 activation
sites would automatically demonstrate the consistent rela-
tionship between that functional region and the ascending
limb of the inferior temporal gyrus. Furthermore, it would

quantitate, in probabilistic terms, the spatial relationships
between the sulcal^gyral anatomy and the functionally
activated zone across subjects. Di¡erences in responses
could be related to demographic, clinical and genotypic
information (Bartley et al. 1997; Zilles et al. 1997), if these
were collected as part of the experiment, and related to
population data already available in the 4-dimensional
database. Cyto- and chemoarchitectural data, as it begins
to populate the database, would be available for automated
reference with regard to this cortical zone (Clark &
Miklossy 1990; Rademacher et al. 1993). Time-series data
from electroencephalography (EEG) or magnetoencepha-
lography (MEG) would show the temporal relationships
of this region to others (Dale et al. 1999; Ahlfors et al. 1999).
Lesion data could also be accessed if such datasets had
been added as an attribute (Zihl et al. 1991) (¢gure 2c).
This is in contrast to the current situation where activated
cortical regions are identi¢ed and one must laboriously
search the literature to try to identify, qualitatively, in
experiments with di¡erent characteristics, qualities and
attributes, the regions of the brain that are of experimental
interest for a given neuroscienti¢c question.

3. STRATEGY AND RATIONALE

(a) Overall concept
The goal of the International Consortium for Brain

Mapping (ICBM) is to develop a voxel-based, probabil-
istic atlas of the human brain from a large sample of
normal individuals, aged eighteen to ninety years, with a
wide ethnic and racial distribution. The dataset is
designed to contain a substantial amount of demographic
information describing the subjects’ background, family
history, habits, diet and many other features. In addition,
clinical and behavioural evaluations include neurological
examinations, psychiatric screening, handedness scores
and neuropsychological tasks. One cubic millimetre
multi-spectral MRI studies including T1-, T2- and proton
density-weighted pulse sequences are obtained consis-
tently. A subset of subjects also have functional imaging
using a standardized battery of tasks and employing func-
tional MRI, PET and event-related potentials. DNA
samples will be acquired from 5800 of the subjects and
made available for genotyping.

From an organizational point of view, eight laboratories
in seven countries on three continents participate in the
core data collection and analysis. These sites were selected
because of their expertise in brain imaging, capacity to
perform a large number of studies in a consistent fashion,
and the fact that most sites had di¡erent imaging devices
and computer platforms, thereby requiring the consor-
tium to solve problems of interoperability and data di¡er-
ences from di¡erent acquisition devices.

It was decided early in the planning for the programme
that in situations where the optimal solution to a given
problem (e.g. data analysis pathway, visualization scheme,
etc.) was not known, each laboratory would independently
try to solve these problems. Once a laboratory-speci¢c
solution was obtained, appropriate algorithms would be
distributed to consortium participants and evaluated. Ulti-
mately, these algorithms were sent to outside laboratories
for independent evaluation and comparison with methods
developed by non-consortium groups. In each case, the
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Figure 2. Illustrative example of human visual area V5.
(a) Four separate subjects demonstrating bilateral CBF^PET
activations of V5 superimposed on their respective structural
MRI studies (Watson et al. 1993). Note the consistent
relationship seen between the activated site (red) and the
ascending limb of the inferior temporal sulcus that also
coincides with the cortical region (seen in (b)) identi¢ed by
Flechsig (1920) as being myelinated at birth. (c) Patient
studied by Zihl et al. (1983, 1991) with damage to the V5
area resulting in a selective disturbance of visual motion
perception.



optimal strategy was then incorporated into the ¢nal
approach used by the consortium. This was a `real-world’
situation designed to produce the optimal result through
competition. As each successful component of these
competitions emerged, it was incorporated into the overall
ICBM strategy for data analysis, visualization and distri-
bution. Thus, while each laboratory developed an indepen-
dent strategy for processing data, the consortium as a
whole made the commitment to a uni¢ed, centralized
strategy for the pooled results, thereby resulting in a single
atlas rather than a federation of atlases. The latter would
result in inconsistencies in data analysis and confounding
factors for users of the atlas in the long run.

The principles, practices and tools developed through
the ICBM consortium have also spawned a series of other
atlas projects on di¡erent populations (¢gure 3). Probabil-
istic atlases for children (i.e. from birth to eighteen years of
age) and disease states (e.g. Alzheimer’s disease, traumatic
brain injury, MS, autism, schizophrenia, stuttering, cere-
bral infarction) are under development. These population-
and disease-speci¢c atlases have been developed for
di¡erent reasons but employ similar principles and many
of the same tools used for the normal adult brain atlas
described here.

We also consider a part of this project to be the devel-
opment of a reference system. The atlas will describe
brain structure and function in three spatial domains and
a temporal one referenced to the age of the subjects. Attri-
butes (e.g. blood £ow, receptor density, behaviours
inducing blood £ow changes at speci¢c sites, signs and
symptoms associated with lesions at speci¢c sites, litera-
ture references) are then superimposed on the basic atlas.

As such, the atlas becomes the architectural framework
for the reference system, the former being grounded in
the four physical dimensions and the latter being exten-
sible, based on the interests and datasets available to
consortium participants and future users.

(b) Probabilistic
Since there is no single, unique representation for the

human brain that is representative of the entire species,
its variance must be captured in an appropriate frame-
work. The framework that we have chosen is a probabil-
istic one in which the inter-subject variability is captured
as a multi-dimensional distribution. These probabilities
can change if subpopulations are sampled because of the
shifting distributions. The probabilistic approach was
relatively new to neuroanatomical thinking when we ¢rst
proposed it in 1992. The only previous related strategies
had to do with post-mortem analyses that reported distri-
butions for structure sizes and dimensions for certain
select regions of the brain (Filimono¡ 1932). In recent
years, the probabilistic strategy has been more widely
used (Roland & Zilles 1994, 1996, 1998; Mazziotta et al.
1995a,b) and many probabilistic atlases are now being
developed for such species as the monkey and the mouse.

For many psychiatric and behavioural problems, the
relationship between structural abnormalities and disease
is not straightforward. For example, while many studies
have demonstrated that schizophrenics are more likely to
have certain structural abnormalities shown by MRI (e.g.
reduced brain size, ventricular enlargement, altered grey
matter density in association cortex), none of these
abnormalities is su¤ciently distinctive or speci¢c to make
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Figure 3. The normal adult ICBM atlas includes individuals between the ages of 18 and 90 years old, as indicated in the centre
of this ¢gure. As a result of the practices, principles and methods developed through this core project, a number of other atlases
and databases have been spawned. Most logical was the development of a paediatric database for structural and functional brain
anatomy. This is indicated on the left side of the ¢gure. Through the use of datasets in both of these atlases as well as the methods
developed in the consortium programme, it has been and will be possible to perform interesting cross-sectional and longitudinal
studies across age ranges. A number of disease-speci¢c atlases have been developed and are discussed in the text. A number of
these are listed in this ¢gure. It is anticipated that there will be a continuing growth in the number of di¡erent disease-speci¢c
atlases and that these atlases will all become related to the normal ICBM probabilistic atlas through a common focus on
neuroanatomy and a four-dimensional data structure.



MRI scanning a useful procedure in the routine clinical
diagnosis of schizophrenia. Similar situations prevail for
behavioural disorders such as dyslexia and autism.

In a recent paper, Leonard et al. (1999), employed a
novel approach for using MRI to identify patients with
schizophrenia. Rather than utilizing a single measure
(e.g. ventricular volume), they used a linear discriminant
function analysis of ten di¡erent anatomical measures
derived using data from 37 schizophrenic patients and 33
normal controls. The controls had been recruited from
among hospital sta¡, with balancing of age, handedness
quotient and parental socio-economic status between the
groups. However, the groups were not balanced for ethnic
background or intelligence quotient (IQ)öand in fact,
the control group had signi¢cantly higher verbal and
performance IQs than the schizophrenic patients. Using
their derived discriminant function, Leonard et al. (1999)
were able to classify 79% of the controls and 76% of the
schizophrenic patients correctly into the proper diagnostic
category. Furthermore, they found that these 10 anato-
mical measures accounted for a signi¢cant part of the
variance in measured full scale IQ in the schizophrenics
but not in the normal controls.

This study illustrates a common concern that arises in
comparisons of di¡erent groups of subjects with one
another in a setting where many di¡erent anatomical
measures are employed without clearly de¢ned a priori
hypotheses. Real di¡erences between the groups among
uncontrolled variables may be the true cause for di¡er-
ences that end up being attributed to the disease itself. For
example, it is possible that the schizophrenic patients
studied had a markedly di¡erent ethnic background from
the hospital employees who were recruited as controls. It
is also possible that the anatomical di¡erences detected
are, in fact, characteristic of any group of normal subjects
having IQs in the range observed in the patients. Having
a large, readily accessible, probabilistic database of
normal subjects would make it much easier for investiga-
tors doing this type of research to evaluate the pertinence
of uncontrolled variables. For Leonard’s study, their
linear discriminant function could be applied to a set of
normal cases to determine whether the false positive rate
for diagnosing schizophrenia varies as a function of
ethnic background or IQ. Demonstration that it does not
would bolster the notion that the anatomical ¢ndings
really are a speci¢c re£ection of the schizophrenic disease
process.

Ideally, the potential correlation between brain struc-
ture and behavioural measures would be explored even
before recruiting subjects into this type of study. An inves-
tigator seeking to replicate Leonard’s ¢ndings might use
data selected from the large normal dataset to explore
possible normal correlations between the ten anatomical
measures and any of the many behavioural measures
already recorded in the database. The large number of
subjects in the database would allow even the extreme
tails of the normal distribution to be explored for correla-
tions that might not be evident in a small group of
subjects clustered near the mean. Any behavioural
measures that showed strong correlations could then be
carefully matched between patient and control groups. To
the extent that such matching is not feasible, quantitative
results from the large normal dataset could be used to

estimate and discount the e¡ects of group di¡erences in
behavioural measures on the dependent anatomical
measures. Identifying and controlling for relevant vari-
ables that correlate with brain anatomy would be an
essential element in establishing the credibility of derived,
quantitative MRI measures that cannot be validated by
simply having an experienced radiologist inspect a scan
using his or her own internalized database of experience
to de¢ne normality.

(c) Neuroanatomy is the language of neuroscience
(i) Many nomenclatures

The basic language of neuroscience is neuroanatomy.
However, as in any global topic, many languages and
dialects exist. Analogous to air tra¤c control systems, the
ultimate solution to the development of a useable brain
atlas requires location references expressed as coordinates
and a common language to express them (for air tra¤c
control, it is the English language). In developing the
probabilistic atlas, it was our intention to be able to
accommodate multiple languages and meanings. As such,
it was important to build a hierarchical nomenclature
system in which aliases could be referenced and the
boundaries to which they referred adjusted, based on the
language selected. This resulted in the requirement for a
nomenclature editing system (BRAINTREE, see ½ 3c(ii)
below) and an approach that ultimately allows translation
from one neuroanatomical language to another without
the requirement to force all investigators to use a single,
arbitrarily chosen language. It remains clear that the
¢nal solution does require a coordinate-based approach
devoid of many of the ambiguities associated with quali-
tative naming of structures.

(ii) BRAINTREE

We have developed a system that provides a graphical
relationship between anatomical nomenclature and its
relationship with the structure or system to which it
belongs. To link this nomenclature to a three-dimensional
space from the atlas, BRAINTREE relies on a two-
coordinate bounding box for each of the nodes, producing
a de¢ned region of three-dimensional space that entirely
encompasses the named structure. The user can select a
structure on the basis of its standard nomenclature and
have its coordinates passed on to standard display or
measurement tools. Hence, the BRAINTREE program
provides a facile interface between an editable hierarch-
ical nomenclature system and the indexable three-
dimensional coordinate space. Furthermore, the nomen-
clature can easily be extended to include the myriad of
aliases that are common in neuroanatomy or even relate
the structural names that provide an association between
species (Toga et al. 1996).

(d) Use of a large population
It is clear that the use of large populations is an essen-

tial requirement in the development of an atlas that is
intended to capture the variance in structure and function
of the human brain. Such a large population can be
newly acquired, as was done in this project, or could be
the result of pooling smaller studies to produce a meta-
database. The latter approach was rejected because, after
examining reports in the literature of smaller sample size
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projects, it was clear that there was such a wide range of
methodological and strategic di¡erences among these
studies as to make their pooling di¤cult, if not impossible.
Technical issues such as voxel size, slice thickness, scanning
parameters and many others would cause di¤culties in
any attempt to produce a homogeneous ¢nal product. The
same can be said of subject selection and description. As
might be expected, a wide range of criteria were used in
selecting subject populations, including the de¢nition of
normality. Screening tests, demographic and background
information as well as neurological and psychiatric exami-
nations vary from study to study, adding to the incompat-
ibility of the pooled results. If one also includes functional
information, the situation is far worse. Since brain function
is obtained by having subjects perform tasks, any slight
variation in the task presentation, psychophysics or the
strategy employed by the subject in performing the task
will cause unpredictable di¡erences among experiments,
thereby adding methodological variance in the pooled
data and confounding the ¢nal product. Thus, it was
decided to collect a sample of a large number of subjects
prospectively for which these confounding factors could be
controlled.

Given the need to have much larger populations of
subjects than had previously been available, the current

programme is now intended to include 7000 normal
subjects obtained from geographical locations as disparate
as Japan and Scandinavia and spanning the age range
from 18 to 90 years. Special e¡orts have been made to
obtain a wide range of racial and ethnic diversity. In
addition, 342 twin pairs (half mono- and half dizygotic)
are also part of this sample. The dataset for each subject
includes a detailed historical description of medical,
developmental, psychological, educational and other
demographic features. In addition, behavioural data,
including neurological, neuropsychological and neuro-
psychiatric examinations, are part of the dataset. In 5800
subjects DNA samples are being collected, stored and
made available for genotyping. This large sample size
allows the opportunity to provide realistic estimates about
the variance of structure and function for brain regions,
the relationships between structure and function at
macro- and microscopic levels, and true phenotype^
genotype^behavioural comparisons. The large sample
size also increases statistical power in making such infer-
ences about the population or when the atlas is used as a
comparison sample for investigations involving other
groups, be they normal or pathological. Lastly, as the
sample size increases, the opportunity to select sub-
populations of meaningful size also increases.
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Figure 4. Target versus reference brains. Fundamental to the development of the probabilistic atlas is the concept that there are
two types of datasets that are required for a comprehensive system. The ¢rst is a target brain or brains. The criteria for this
resource are listed in the ¢gure. Ideally, single individuals who are normal and studied during life will have the complete
complement of in vivo imaging studies performed. After death, these same individuals would be studied again using appropriate
imaging studies, such as MRI, and then detailed cytoarchitectural and chemoarchitectural analyses of their brains would result
in a very information-rich ultimate dataset. Because it is unlikely that such a situation will occur (although we have studied a few
individuals ante- and post-mortem), typically, the post-mortem and in vivo studies are obtained on separate individuals. These
target brains are used to understand microscopic and macroscopic structure f̂unction relationships better but also to
take a newly acquired dataset and warp it to match the target, thereby picking up the anatomical labels for each structure on a
voxel-by-voxel basis. When the new study is back-transformed to its original shape and con¢guration, all structures in the brain
will have the appropriate labels with an error rate de¢ned by the con¢dence limits of the warping algorithm and other factors
discussed in the text. Reference brains are also described in the ¢gure. These represent large populations of in vivo studies where
population statistics about variance for structure and function can be obtained. Reference brains can also be sampled to provide
subpopulations appropriate to a unique set of descriptors. The size of the sample set for the reference brains will dictate whether
subpopulations of su¤cient size will be available for speci¢c projects.



(e) Target and reference brains
A fundamental concept of the consortium’s project was

to distinguish between target and reference brains
(¢gure 4). We have de¢ned the target brain to be the
dataset, derived from one or, ideally, a few individuals,
that has the richest collection of data available. Theoreti-
cally, this would be the brain of a normal individual
studied with in vivo, high resolution, structural and func-
tional imaging and then, after death, having detailed
post-mortem analysis including cyto- and chemoarchitec-
ture. If a series of such brains could be studied, then a
probabilistic target brain would emerge. Given the high
resolution of the post-mortem data, target brains would
be the most informative with regard to anatomical and
chemical localizations. While we have studied a few indi-
viduals (all elderly) who had both in vivo macroscopic
brain imaging andöthrough the UCLA Willed Body
Programöpost-mortem cryosectioning, we typically do
not have both in vivo and post-mortem datasets of the
same individual. As such, a synthesis of this information
into an optimized target brain has been the practical
solution, to date.

In contradistinction to the target brain, reference
brains are derived from large populations of subjects
typically through in vivo imaging of structure and
function. These datasets provide information about
variance in the population for both structure and func-
tion, but at a three-dimensional spatial resolution that is
three orders of magnitude lower than the target brains.

Target and reference brains are used for di¡erent
purposes. Target brains are, as the name implies, the
target to which an unlabelled dataset can be warped. The
unlabelled dataset then picks up the anatomical,
functional or other attributes of each voxel. Once it is
back-transformed to its original shape, the new dataset
will have the appropriate anatomical and functional
labels for all brain regions. A certain percentage of these
labels will be erroneous based on imperfections of the
warping system, an incomplete understanding of the
anatomy of homologous brain regions between subjects
and errors in the primary labelling of the target brain.
Reference brains provide data about distributions of brain
regions and can be divided into subpopulations for
speci¢c purposes. Reference brains give estimates of
anatomical and functional regions in a population of
individuals and, as such, can be used to determine
con¢dence limits when a new dataset falls outside the
range of normality or expected variance for a given popu-
lation. Taken together, these two tools provide important
but very di¡erent vehicles for analysing existing or new
datasets with regard to brain structure and function.

(f) Function
It is important to emphasize from the outset that our

motivation for studying functional landmarks in this
project is analogous to the motivation for studying struc-
tural anatomical landmarks. Speci¢cally, the ICBM atlas
will use functional landmarks to augment atlasing methods
that are currently based primarily on macroscopic struc-
tural anatomy in the same way that these anatomical
methods now augment atlasing methods that were
previously based on stereotaxis with simple proportional
scaling. An important distinction must be made between

functional imaging to answer neuroscience questions,
which is not proposed here, and functional imaging to
serve as a neuroinformatics tool, which is our intent.
Whereas neuroscience functional imaging studies currently
use individual macroscopic anatomical landmarks to de¢ne
a common neuroinformatics framework for comparing and
combining data from di¡erent subjects, we anticipate that
future neuroscience functional imaging studies will
complement this macroscopic anatomy with functional
anatomical landmarks, identi¢ed in each individual
through a selected battery of neuroinformatics tasks. In
general, we expect that the neuroinformatics tasks and the
functional landmarks that they produce may be completely
unrelated to the tasks constituting the primary focus of the
neuroscienti¢c investigation. It is our objective to develop
and validate tasks that are well suited to producing func-
tional landmarks. These tasks will be the ¢rst of what we
expect to be an ever growing library of tasks that will
constitute a functional reference battery (FRB). The FRB
will be used to develop a new generation of brain atlases
through novel warping techniques that move beyond
macroscopic anatomy and into the realm of functional and
cytoarchitectonic similarities as the fundamental basis for
homologous mapping of one brain to another.

The major theoretical and practical issue in identifying
homologous brain structures, and in warping strategies
designed to compare brains within a population of
subjects, is a critical issue with regard to both three-
dimensional and surface geometries and representations.
In this project we have based all aspects of the atlas
development on three-dimensional, voxel-based strate-
gies. Nevertheless, this neither obviates nor limits one’s
capacity to address special issues related to cortical
surface topology. In fact, a signi¢cant fraction of the
programme has been focused on the development of
appropriate cortical surface extraction and cortical inter-
face (e.g. grey^white interface) identi¢cations. It is
important to understand the appropriate constraints that
must be imposed to preserve cortical surface topology for
both the cerebrum and the cerebellum (Felleman & Van
Essen 1991; Van Essen & Drury 1997; Van Essen et al.
1998; Fischl et al. 1999).

To understand the motivation to identify functional
landmarks, it is important to understand the di¡erences
and similarities between functional landmarks and anato-
mical landmarks with respect to meeting the objectives of
neuroinformatics research. Neuroanatomy and, speci¢-
cally, neuroanatomical landmarks have been the basis
that formed the framework for indexing neuroscience
information from a number of speci¢c sources collected
across spatial scales. Explicit in the plan was the notion
that the atlas system would need to continue to adapt in
an iterative fashion to accommodate improvements in
spatial scale and in the models used to map data into a
single neuroanatomical framework. A self-critical evalua-
tion of the methodologies used for structural atlasing
alone reveal areas in need of extension:

(i) Macroscop ic landmarks from structural MRI studies provide a
suboptimal basis for appropriate mapping of individual anatomy into

a uni¢ed neuroinformatics framework
Three independent lines of research serve to demon-

strate the di¤culties of relying exclusively on macroscopic
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anatomical landmarks as a neuroinformatics framework.
The ¢rst evidence comes from the signi¢cant progress
made in warping three-dimensional anatomical data to
match a target template. In the absence of brain
pathology, it is computationally feasible to use high order,
nonlinear warps to generate a one-to-one correspondence
between brains, even while requiring perfect alignment of
unambiguous cortical anatomical features such as the
crests of gyri and the depths of sulci. However, even with
the inclusion of such anatomical constraints, these
mappings are not unique. Mechanical properties such as
viscosity or elasticity must be ascribed to the brain tissues
to ¢nd a solution that is optimal from the standpoint of
those presumed mechanical properties (Christensen et al.
1993; Davatziko s 1997; Schormann et al. 1996). In the
absence of more restrictive constraints or independent
external standards, di¡erent solutions can all lead to
equally good (from the standpoint of visual inspection or
image similarity criteria) but mutually inconsistent
answers, indicating that with macroscopic anatomical
data alone, the mapping problem is substantially under-
constrained. While it might be a valid computer science
goal to identify the transformation that perfectly maps
one brain onto another, while minimizing some intuitively
appealing quantity, this is not necessarily the best
neuroinformatics goal. A more appropriate goal from a
neuroinformatics standpoint is to maximize the genuine
homology of points that are brought into correspondence
by the transformation. Functional landmarks will provide
additional constraints on inter-subject warping that will
help to meet this important neuroinformatics goal.

Various criteria can be used to de¢ne homology, and
con£icts between macroscopic homologies and micro-
scopic cytoarchitectonic homologies (Rademacher et al.
1993) constitute the second line of research demonstrating
the problems of relying solely on macroscopic structural
anatomy. Recent post-mortem cyto- and chemoarchitect-
onic studies have shown that even some sulcal and gyral
features that were once thought to be almost perfectly
correlated with nearby cytoarchitectonic boundaries are
in fact only approximately correlated (Zilles et al. 1997;
Geyer et al. 1997, 1999, 2000; Amunts et al. 1999, 2000). It
is our explicit bias that homologies based on function and
cytoarchitectonics are more fundamental to neuroscience,
and hence to its informatics, than homologies based on
sulcal and gyral anatomy.

The third line of research that highlights the di¤culties
of an informatics framework that is based solely on struc-
tural anatomy comes from the rapidly expanding ¢eld of
functional magnetic resonance imaging (fMRI). A
decade ago, functional imaging with PET was of su¤-
ciently low resolution that atlases based on the simple
proportionality of the original Talairach system were
adequate to assure that homologous activation sites would
overlap from subject to subject and that the resulting
group results would be interpreted as consistent across
laboratories. Subsequent improvements in PET image
resolution have justi¢ed the adoption of the more sophisti-
cated techniques based on structural MRI scanning and
MRI^PET coregistration that are in widespread use
today (Woods et al. 1993). The high resolution possible
with fMRI, and the fact that statistically signi¢cant
responses are readily identi¢ed in fMRI data from a

single subject, demand much more accurate mapping of
homologous landmarks from every individual subject and
threaten to make methods that rely solely on macroscopic
anatomy obsolete. Ideally, a neuroinformatics framework
should seek to stay a step ahead of such developments.
Functional links may also be of particular value for
patient populations where normal function may persist
even in the presence of substantial anatomical distortions.
Providing the necessary link between global and local
anatomy is a problem that will require new tools, new
approaches and new population data acquired speci¢cally
for that purpose.

(ii) Cytoarchitectonic studies provide an insu¤cient basis for
quantifying relevant inter-subject variability in the population

As mentioned above, cytoarchitectonic studies in a
small number of subjects can be extremely powerful in
demonstrating the potential range of inter-subject varia-
bilityöhence, our motivation to begin to incorporate such
data into the ICBM atlas. However, the collection of
cytoarchitectonic data is extremely demanding in terms of
time and resources. These realities make it unlikely that
reliable population estimates of the variability between
structural and functional anatomy will be quanti¢ed for
many brain regions any time soon using these techniques.
Since cytoarchitectonic s cannot be identi¢ed in vivo, such
data may help to de¢ne general rules (e.g. a given
cytoarchitectonic ¢eld is most likely to be located at posi-
tion X in women and at position Y in men), but will not
help to identify the individualized exceptions to such rules.
In contrast, functional imaging is well suited to population
based studies and functional imaging can be applied routi-
nely to living individuals. To a ¢rst approximation, func-
tional landmarks can be viewed as an in vivo proxy for
cytoarchitectonic landmarks. It should be explicitly stated
that it is not our primary intent to equate a given func-
tional landmark with a given cytoarchitectonic region.
Indeed, it is clear that a one-to-one relationship will some-
times not exist, since functional subdivisions are present as
maps within some cytoarchitectonic areas (e.g. M1 and V1)
and since adjacent, functionally correlated, areas can be
distinguished cytoarchitectonically. Rather, we view
cytoarchitectonic anatomy and functional anatomy as
intrinsically intertwined features that reveal an underlying
pattern of brain organization that provides an optimal
framework for neuroscience research and neuroinformatics
challenges. By warping brains in a way that brings homo-
logous functional landmarks into concordance, we expect
simultaneously to bring nearby cytoarchitectonic regions
into better superimposition, even if we do not explicitly
know the identities of the cytoarchitectonic regions or even
the locations of their boundaries (¢gure 5). Capturing the
unique spatial information represented by functional land-
marks is an important front for neuroinformatics
researchöone that will provide routine, direct access to
this fundamentally important level of brain organization.

Properties of good and informative functional landmarks
The minimal attributes of a good functional landmark

are that it be unambiguously detectable in individuals
and that the variability in its location within individuals
be small. `Small’ is a relative term, and contexts for
making this judgement will be explicitly de¢ned below,
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along with speci¢c consideration of how `landmarks’ can
be extracted from functional images. Additional desirable
attributes of functional landmarks and the tasks that
produce them are listed in table 1. We make an important
conceptual distinction here between a g̀ood’ functional
landmark and an `informative’ functional landmark. In
order also to be considered informative, a good functional
landmark should provide unique information that could
not have been determined purely on macroscopic anato-
mical grounds. For example, a functional task for identi-
fying primary visual cortex might not prove to be
particularly informative since human cytoarchitectonic
data indicates that striate cortex consistently maps to the
calcarine ¢ssure (Polyak 1957) (though some variability is
present, see review by Aine et al. 1996). In contrast, a
good functional landmark in a frontal region, where
gyral anatomy is quite variable, might be highly informa-
tive. Caution is generally indicated when trying to predict
in advance which functional landmarks will ultimately
prove informative since detailed studies of the relationship
between cytoarchitectonic and macroscopic anatomy are
still relatively rare, as are data comparing functional and
structural anatomy. Indeed, with careful study, some
traditional assignments of functional areas to speci¢c
sulcal or gyral locations are proving to be less reliable

than previously expected (Aine et al. 1996; Zilles et al.
1997). Likewise, data from some functional studies have
identi¢ed previously unsuspected function^structure
correlations. A good example of this latter situation
comes from studies of putative human area V5, where
substantial variability in Talairach coordinate location
across subjects turned out to be largely explained by a
highly consistent relationship between V5 (de¢ned func-
tionally) and the intersection of the ascending limb of the
inferior temporal sulcus and the lateral occipital sulcus
(¢gure 2a) (Watson et al. 1993). Because of the di¤culty
in predicting which landmarks will be informative, we
have primarily focused our attention on identifying tasks
that produce good functional landmarks and identifying
these landmarks in a representative population. These
data are being evaluated to determine how informative
the landmarks actually are and to look for currently
unrecognized structure^function correlations.

Those who are primarily involved in functional
imaging neuroscience (as opposed to neuroinformatics)
research may be surprised that our criteria for a good
functional landmark do not include that the landmark
should have a consistent location across subjects. When
trying to answer neuroscience questions, there are situa-
tions where variability across subjects is undesirableöone
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Figure 5. Hypothetical example of concordant and discordant relationships between macroscopic function, derived from fMRI
or PET, and microscopic cyto- or chemoarchitecture from post-mortem specimens. First, all datasets are spatially normalized in
probabilistic space at a macroscopic scale (e.g. gyri/sulci) then the relative positions of functional landmarks (centre row) are
examined relative to the sites of cyto- or chemoarchitectural zones (top row). There is superimposition of the sites in the left
panels (concordance) but not in the right panels (discordance). With systems and sets of data such as those proposed in the
ICBM atlas, it will be possible to add an ever-increasing body of this type of information, leading to structure f̂unction relation-
ship insights throughout the cortex, deep nuclei, cerebellum and brainstem.



hopes that a functional task will produce responses at a
highly consistent, anatomically standardized location
across subjects so that overlapping regions of response
will increase statistical signi¢cance and so that the consis-
tency of location will increase con¢dence that the areas
seen in each individual are truly homologous. It is, there-
fore, perhaps counterintuitive that exactly the opposite
situation applies to functional landmarks to be used for
neuroinformatics. A functional landmark that is always
present in the exact same location in every subject, when
using current methods of anatomical standardization, is
assured to be uninformative, providing only redundant
information that could have been derived from the anato-
mical data alone.

The neuroinformatics goal here is to use functional
landmarks to provide a new source of valid, independent
anatomical information that cannot be detected using
macroscopic anatomy and to use this information to
improve the homologous mapping of di¡erent subjects to
one another or to an atlas. The result should be better
mapping from one subject to another that will serve to
improve local homology, a goal that should prove advanta-
geous when subsequently analysing neuroscience func-
tional imaging data in these same subjects. Two major and
one minor assumption are implicit in this line of reasoning
and need to be explicitly stated: (i) despite the variation in
location, it is critical that the functional landmarks that
are identi¢ed in each subject are truly homologous ;
(ii) methodological variability in establishing the location
of the functional landmark within each subject must be
small when compared with the true anatomical variability
in the standardized location of the landmark across
subjects; and notable, though less important; (iii) some
preservation of local topology is assumed, so that estab-
lishing the location of a functional landmark will indeed
improve the homologous mapping of nearby brain regions.

An important implication of the last two assumptions
is that the value of a functional landmark will vary:
(i) depending on the amount of within-subject variability

(more variability decreases its value); (ii) depending on
the amount of local inter-subject variability (more
variability increases its value); and (iii) depending on its
proximity to the nearby regions where better mapping is
desired (greater proximity increases its value). If the goal
is to improve mapping throughout the brain, numerous
functional landmarks may be needed, whereas local
mapping may be improved with just one strategically
placed functional landmark. The value of proximity
raises an important consideration: in functional neuro-
scienti¢c imaging experiments, why bother to use the
locations of established functional landmarks that may be
unrelated to the task of interest rather than simply using
the locations produced by the primary task itself ? There
are at least two good answers to this question: ¢rst, unless
landmarks produced by the primary task have been
determined to be good landmarks (implying considerable
prior investigation), the resulting mapping may actually
lead to less reliable homologous mappings than anato-
mical data alone; and second, statistical models for evalu-
ating group signi¢cance would be invalidated by such a
procedure unless separate trials were used for mapping
and for addressing the primary neuroscience question.
Consequently, appropriate use of the landmarks produced
by the primary task being investigated would require that
these landmarks be validated and used in exactly the
same way as any other nearby functional landmark. The
use of landmarks will also depend, in part, on the brain
region(s) of interest for a given experiment and the inter-
ests of the investigator.

(g) Analysis strategy
At the outset of this project, it was unclear what the

optimal analysis strategy would be for both the structural
and functional aspects of the programme. Given the large
number of subjects, each with multi-spectral MRI data-
sets and many with functional imaging studies as well, it
was clear that the tools to be developed would have to
function in an automated, or at least semi-automated ,
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Table 1. Criteria for evaluating functional landmarks

good functional landmarks informative functional land-
marks

essential criteria pragmatic criteria desirable criteria criteria

universally (or nearly
universally) identi¢able
in individual subjects
without ambiguity

location insensitive to
environmental variation
(e.g. background noise levels, room
lighting)

location independent of
imaging modality

must meet essential criteria
for good functional landmarks

location in individuals
stable with repeated testing

location insensitive to educational
background, native language,
gender, etc.

underlying physiology
understood

must provide unique spatial
information not predictable
from macroscopic anatomy

subject performance veri¢able
or irrelevant
minimal opportunity for diverse
cognitive strategies

identi¢able simulta-
neously with many other
landmarks produced by
a single task and control

tasks simple enough to be
applicable to cognitively impaired
patient populations or children



fashion to be feasible. Furthermore, reliable automaticity
would be a general bene¢t to the brain imaging ¢eld,
given the labour-intensive aspects of manual image
editing. It was also clear that certain steps would be
required to process data in what we have called an ICBM
`analysis pipeline’. These steps include:

(i) screening data for obviously incomplete or artefact-
laden studies and rejecting them;

(ii) intensity normalization in three dimensions for
each pulse sequence;

(iii) alignment and registration across pulse sequences
and studies within a given subject;

(iv) tissue classi¢cation (i.e. grey and white matter,
cerebrospinal £uid, other);

(v) `scalping’ whereby extracranial structures are
removed;

(vi) spatial normalization of each subject to a target
where anatomical labels can be obtained automati-
cally;

(vii) surface feature extraction;
(viii) visualization.

Given this sequence of tasks, it was unclear, in most
cases, what the optimal solution for each would be.
Rather than making an a priori decision and have all
consortium members work to achieve it, an alternative
approach was chosen. It was decided that each of the
primary laboratories in the consortium would work to
solve each step in the analysis pipeline independently and
in parallel. These laboratory-speci¢c algorithms would
then be locally optimized. Once a given laboratory was
satis¢ed with the performance and documentation of
their approach, it would be distributed to the other parti-
cipating laboratories for alpha testing. If an algorithm
failed to perform adequately, or was awkward to use
because of hardware platform incompatibilities or other
factors, it was rejected. Those algorithms that performed
well across consortium laboratories were ultimately sent
to an independent group (David Rottenberg, Stephen
Strother and colleagues at the University of Minnesota)
for beta testing. This independent testing included not
only the ICBM algorithms for a given module in the
analysis pipeline but also any other algorithms that could
be identi¢ed worldwide that purported to perform the
same functions. During beta testing, algorithms were
evaluated with simulated as well as real datasets selected
by the beta test laboratory and evaluated for documenta-
tion, ease of installation, computation time, accuracy and
precision. The results of these evaluations were then
published (Strother et al. 1994; Arnold et al. 2001). The
winners of this competition were then selected for the
ICBM analysis pipeline (¢gure 6) and will be the basis
for the mass data analysis of all datasets. While it was
decided that it was important to analyse all 7000 studies
in a consistent manner, so that users would know the
methodology, algorithms and versions of the algorithms
from which the results were derived, this in no way
precluded individual laboratories in the ICBM consor-
tium or elsewhere from using their own strategies for data
analysis on the original datasets which are provided
through digital libraries (see ½ 3i(i)). This strategy has
been successful in that it established an internal competi-
tion whereby the best solution emerged rather than using

an a priori and hypothetical prediction that might have
fallen far short of the optimal outcome.

(h) Visualization
Similar to the approach chosen for analysis, it was

decided to keep an open mind as to how to present the
data developed by the consortium. Given the probabilistic
nature of the resultant data, the decision is not straight-
forward and has not yet been fully resolved. It may well
be that the optimal solution is to select many avenues and
that users of this system choose for themselves.
Approaches that £atten (Carman et al. 1995; Felleman &
Van Essen 1991; Van Essen et al. 1997, 1998) or in£ate
(Dale et al. 1999; Fischl et al. 1999) the cortex have been
proposed and well described. As a visualization tool,
these strategies allow cortical anatomy to be seen in its
entirety at the expense of the more familiar, three-
dimensional appearance of the brain. It is important to
note here that visualization, simply as a tool to view the
data, must be distinguished from the use of these tools to
identify homologies between regions in di¡erent brains or
di¡erent species. In this context we consider these strate-
gies only as a visualization tool as our approach to
homology identi¢cation was described earlier with regard
to macro- and microscopic structure^function considera-
tions. Each visualization strategy has its bene¢ts and
limitations. The traditional three-dimensional view of the
brain in its natural state obviates the ability to see brain
regions hidden in folded cortex or deep structures without
providing tools for translucency or sectioning. Flattening
or in£ating the surfaces will produce areas of compression
and expansion that alter the data from its original state
but make all surface regions visible. Providing all of these
avenues will allow the user to choose among them given a
speci¢c purpose. The user can choose whether the bene¢ts
and insights provided by a given visualization strategy
outweigh the disadvantages or artefacts induced by the
visualization scheme.

(i) Database
(i) Digital libraries

In addition to the derived data organized in the data-
bases described above, digital libraries and data ware-
houses (¢gure 7) of complete datasets will also be
provided through the ICBM project to the neuroimaging
community. These datasets include those with `raw’ data
(i.e. complete, three-dimensional, multi-spectral MRI
structural studies of individual subjects), s̀calped’ (i.e.
extracranial structures removed) datasets, and intensity
normalized, s̀calped’ datasets. Access to such information
may allow investigators to obtain normal control data for
neuroimaging experiments or to test various methods for
image analysis and display without the requirement to
acquire original data on their own. Most problematic will
be the distribution of the `raw’ dataset, since the potential
for compromising subject con¢dentiality is an issue. Since
the experimental subject’s face could be reconstructed from
the raw datasets, one strategy would be to alter or eliminate
facial structures from the dataset prior to distribution.

(ii) Four- dimensional
There currently exists no comprehensive database for

the storage of complete, individual subject, neuroimaging

1304 J. Mazziotta and others Probabilistic human brain atlas

Phil.Trans. R. Soc. Lond. B (2001)



datasets for the human brain that is both electronically
accessible and e¤cient in its interactions with neuroscien-
tists. This reduces the value of both clinical and research
funds spent on the acquisition of these important and
interesting studies. The physical world is organized in
four dimensions and, thus, forms a logical and compre-
hensive organizational framework for the ICBM data-
base. Plans anticipate the future inclusion of time-series
data from dynamic, functional data acquisition methods
such as fMRI, EEG and MEG, requiring the fourth
dimension. It is expected that spatio-temporal and purely
temporal patterns of brain activity will constitute func-
tional entities and markers of their own. These can be
used for the following purposes.

(i) Since function will be de¢ned in the future by
brain locations and timing of activity, the probabil-
istic reference will incorporate temporal and
spatio-temporal brain activity information.

(ii) Spatio-temporal and temporal functional markers
will be used for most of the same purposes
described for the spatial functional markers (fMRI,
PET) in this paper: warping; correlations across
subjects; an additional source of information in
calculating population distributions these can be

used, for example, to inform studies with small
populations, etc.

(iii) Temporal and spatio-temporal information will be
used to correlate brain activity across subjects in
the temporal dimension.

(iv) They can also be used as priors for brain source esti-
mation methods, and their probability distributions
can be used for Bayesian procedures in EEG and
MEG brain source localization (Schmidt et al. 1999).

With this data structure, queries-by-content tools and
strategies are being developed. These tools will allow
users of the database to submit a query in the form of
actual data (e.g. a two-dimensional image of a portion of
the brain or a three-dimensional block of data) and ask
the database to search for matches using wavelet-based
techniques that have previously been demonstrated to be
successful for two-dimensional internet searches of
graphic material (Wang et al. 1997).

The expansion of these approaches to three and, even-
tually, four dimensions will be an important neuroinfor-
matics milestone that will ¢nd uses far beyond the
applications in this consortium.

Furthermore, a system organized in this fashion, and
the tools associated with it, will allow for e¤cient,
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Figure 6. ICBM analysis pipeline. Since it was impossible to predict what speci¢c algorithm or mathematical strategy would be
optimal for each step in the analysis of structural and functional data collected for subjects in this consortium project, the
original core laboratories elected to each develop independent strategies for each step. Once complete and tested within a given
laboratory, they were distributed among consortium participants for alpha testing. After the consortium members were satis¢ed
with the performance at this phase, all consortium-developed algorithms were delivered to an independent laboratory (that was,
not part of the consortium), for beta testing. The beta testing included not only the ICBM-developed algorithms but also any
other algorithms identi¢able worldwide that purported to perform the same function. The best (see ½ 3g) algorithm was then
selected for incorporation in the ICBM pipeline. All data in the ¢nal atlas will be processed through this uni¢ed, single pathway.
The bottom four boxes (white) in the left column represent consortium sites contributing algorithms to the pipeline.



convenient and comprehensive access by neuroscience
clients to the ever growing data in the ICBM probabilistic
reference system. The goal is not to develop physiological
models of brain function, neural connectivity and other
important neurobiological questions. But these exciting
opportunities will be more easily achieved by providing a
system of database interactions and structure for model-
lers, neuroimagers and neuroscientists in general. We
envision that, once established and populated with data,
the probabilistic reference system that is organized in this
fashion will allow for èlectronic’ hypothesis generation
and experimentation using previously collected, well-
described and e¡ectively organized data.

(iii) Attributes
It is conceptually important to understand that the

database architecture, while organized in four dimen-
sions, can have a very high number of attributes all refer-
enced to these basic four dimensions. These additional
attributes need not be speci¢ed at the time of establishing
the data sample or the dataset. Some can be derived and
others can be added at a later point through further
examination of the original subjects (e.g. longitudinal
studies, other methodologies) or by further analysis of
existing data (e.g. genotyping of stored DNA samples).

The most di¤cult challenge to the actual organization
of such a database is the scaling and referencing of data
across major spatial or temporal domains. While origin-
ally developed to have a fundamental spatial unit of

1mm3 resolution, there is no reason why microscopic and
ultrastructural information cannot appropriately populate
the individual 1mm3 voxels of the macroscopic dataset.
The same can be said of temporal information, but the
exact manner of binning of time-series information will
require judicious attention to the types of queries anti-
cipated of such datasets.

(iv) Central versus distributed
A business metaphor is appropriate here. Fledgling

industries rarely do well when trying to establish stan-
dards, means of communication and interoperability
methods that are designed to result in a reliable and
durable outcome for a given community. Examples
abound, including: telecommunications, aviation, electro-
nics, meteorology and others. In most of these cases, a
well-designed centralized approach established both the
problems and the solutions that later led to deregulated,
decentralized systems that were linked by regulatory
groups, industrial standards and meta-databases. Simi-
larly, in the burgeoning ¢eld of neuroinformatics, an
initial centralized approach appears both desirable and
manageable. It allows for a straightforward and easily
monitored means of distributing datasets on a continuous
basis. A centralized approach can also monitor the
required submission of attributes derived from the data-
sets back into the database as a measure of successful,
reciprocal sharing of data and results (Bloom 1996;
Pennisi 1999). Finally, in order to even attempt such a
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Figure 7. Digital libraries and data warehouses. We envision two outputs of the probabilistic atlas to the neuroimaging and
neuroscienti¢c communities. The ¢rst is termed `digital libraries’. In these libraries we will catalogue complete MRI studies
from large numbers of subjects. They will be held in three forms: raw data (with the face corrupted for con¢dentiality reasons);
intensity normalized images; and `scalped’ intensity normalized images where extracranial tissues have been removed. A user
would be able to select a certain list of descriptors (e.g. females, aged 25^30, right-handed) and will be told how many subjects
and datasets ful¢l this requirement. These datasets can then be transferred (either electronically or through magnetic media,
depending on the size) to the requesting investigator. Data warehouses provide database interactions where probabilistic
structures and high-level queries can be obtained by interacting with the entire population of 7000 studies or user-selected
subpopulations. Such queries can be representational or symbolic and may ultimately be object-oriented. These queries may
involve the imaging, clinical, behavioural or genetic data.



project, there must exist a critical mass of data analysis
tools, organization and reputation to make participation
attractive psychologically and sociologically. The common
goal and ultimate result must also be su¤ciently valuable
to the contributing sites to make participation compelling.
The results of participation must be worth more than the
sum of the individual parts.

( j) Real world
The ICBM consortium has always maintained a `real

world’ environment such that the participating sites use
di¡erent equipment, software and protocols re£ecting a
microcosm of the larger neuroscience, neuroimaging and
neuroinformatics communities and forcing the develop-
ment of solutions to problems through £exible, compatible
systems rather than rigid standards, protocols and
equipment requirements. The signi¢cance of this feature
is that the products are not platform-, institution- or
protocol-speci¢c.

(i) Interoperability
Interoperability was an important concern early in the

development of the ICBM atlas. So important was the
requirement to develop interoperable tools and datasets
that a conscious decision was made to deliberately utilize
imaging instruments, computing hardware and ¢le
formats that di¡ered among the participating sites. This
forced certain principles and rules to be utilized in the
development of software and the exchange of data, the
goal being accessibility of any ultimate end user to all of
these products. The psychology and sociology of any
advanced research ¢eld is to develop home-made tools
and to maintain intralaboratory ¢le structures. The
experience in the ICBM consortium was no di¡erent. As
such, we developed translators that would allow datasets
to be transferred among sites with an agreed upon ¢le
format (MINC, Neelin et al. 1998) but that was translated
into the `home’ ¢le format upon receipt at any of the
participating sites. A similar strategy was used for algo-
rithms. This simplistic approach has worked quite well,
allowing a relatively seamless exchange of information.

(ii) Quality control
If the ICBM atlas is to be a growing resource, tools

that have been developed, thus far, will ultimately be
open to the entire neuroscienti¢c community for the
future additions of datasets. How then will we assure the
quality of data from investigators? Having pondered and
debated this question for many years and having
examined the approaches used by other ¢elds, the simple
answer is that we cannot assure a certain level of quality
control in a completely open data exchange program. Not
only is this impractical but it may also lead to the erro-
neous exclusion of data that might someday be deemed
valuable. If there were some ¢lter on the input of data,
what would the review process be? How can we predict
how tomorrow’s observations will be judged by today’s
standards? We cannot. Furthermore, in a practical sense,
such an approach would immediately become backlogged
with datasets awaiting `review’ by some `panel of experts’
whose opinions might change as time and experience
progresses. What we can provide, however, is a system by
which users of such datasets can select their own level of

con¢dence about the populations or results that they
sample. For example, a user might request all information
about a certain region of the brain for a given demo-
graphic population of subjects. Most of these data would
be of high quality and reliably collected but some of them
would undoubtedly include experimental, methodological
and other errors. Nevertheless, it would give the user a
complete picture of all of the information available about
their query. At the other end of the spectrum, consider a
user who is interested in only the most accurate informa-
tion about a given site in the brain for a certain popula-
tion. That user could request data that was only obtained
from the results of peer-reviewed, published and indepen-
dently reproduced data collections. Thus, just as the data-
sets can be ¢ltered using demographic, anatomical or
clinical criteria, they can also be ¢ltered and queried by
con¢dence level. `Let the user beware’ is the only rational
approach to developing such a system.

4. METHODS AND RESULTS

(a) MRI
(i) Basic principles

Multi-spectral anatomical MRI data for the ICBM project
were acquired using optimized protocols matched as closely as
possible across the di¡erent scanner manufacturers and ¢eld
strengths (3.0 T GE (Milwaukee, WI), 1.5 T Philips (Bothell,
WA), and 2 T Elscint (Israel)). The protocol design goals were
to achieve whole head 1mm isotropic T1-weighted image
volumes and whole head 1 £1£2 mm T2- and PD-weighted
volumes.

(ii) Averaging
The accuracy of brain atlases is constrained by the resolution

and signal gathering powers of available imaging equipment. In
an attempt to circumvent these limitations, and to produce a
high resolution in vivo human neuroanatomy, we investigated the
usefulness of intra-subject registration for post hoc MR signal
averaging (Holmes et al. 1998). Twenty-seven high resolution
(7£ 0.78 mm3 and 20£1.0 mm3) T1-weighted MRI volumes
were acquired from a single subject, along with twelve double-
echo T2/PD weighted volumes. These volumes were automati-
cally registered to a common stereotaxic space in which they
were subsampled and intensity averaged. The resulting images
were examined for anatomical quality and usefulness for other
analytical techniques.

The quality of the resulting images from the combination
of as few as ¢ve T1 volumes was visibly enhanced. The
signal-to-noise ratio was expected to increase as the root of the
number of contributing scans, to 5.2 for an n of 27. The improve-
ment in the n ˆ 27 average was great enough that ¢ne anato-
mical details, such as thalamic subnuclei and the grey bridges
between the caudate and putamen, became sharply de¢ned. The
grey^white matter boundaries were also enhanced, as was the
visibility of any ¢ner structure that was surrounded by tissue of
varying T1 intensity. The T2 and PD average images were also
of higher quality than single scans but the improvement was not
as dramatic as that of the T1 volumes. Overall, the enhanced
signal in the averaged images resulted in higher quality anato-
mical images with improved results for other post-processing
techniques. The high quality of the enhanced images permits
novel uses of the data and extends the possibilities for in vivo
human neuroanatomical explorations. Post hoc registration and
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averaging of MRI scans is a robust method for the enhancement
of MR images. There is a signi¢cant reduction in noise in aver-
aged images that reveals previously unobservable structure. The
high quality of the resulting images opens the door to other
forms of post-processing and suggested even further applica-
tions. The method itself is very straightforward and can easily
be employed.

(iii) Quality control issues
A major challenge in the oversight and ultimate outcome of a

large multi-site project involving investigators from around the
world is to maintain quality assurance and control. While this
entails innumerable administrative issues, not appropriate for
this review, one area is of interest. Since the decision was made
to collaborate among sites having di¡erent scanner manufac-
turers, the problem of attempting to determine an appropriate
means of calibration and quality control among these sites
became an issue. Typically, manufacturers will provide a
phantom speci¢c for their instrument that identi¢es aberrations
in radio frequency, ¢eld homogeneities and geometrical distor-
tions. Such phantoms are typically not optimal for use among
di¡erent instruments in the MRI ¢eld. In addition, we experi-
enced numerous problems trying to transfer phantoms and
related calibration materials across international borders in an
e¤cient manner. This led to the concept of the living or `smart’
phantom. The smart phantom is an individual (or group of
individuals) who physically travel from site to site at regular
intervals, bringing with them a physical phantom as well. Thus,
the same brain(s) is scanned at each site serially over time. This
provides a number of advantages that we had not been able to
achieve using physical phantoms alone. First, it provides a
convenient way of moving the physical phantom from site to site
and ensuring that it is scanned on time and in a correct manner.
Second, it provides a stable and realistic dataset that can be
used for calibration among di¡erent participating sites. Third,
there are certain liaison activities associated with this process, in
that the s̀mart phantom’ interacts directly with those individuals
most speci¢cally involved in scanning test subjects, an opportu-
nity that a¡ords interactions, suggestions, trouble-shooting and
fact-¢nding. Fourth, this strategy provides a convenient way of
calibrating a new or upgraded instrument, an inevitable event
in a study of this duration, prior to the scanning of test subjects.

(b) Post-mortem cryosectioned material
(i) Data acquisition

Mapping the human brain and its functions requires a
comprehensive anatomical framework. This reasoning dictated
the need in our consortium to obtain high resolution, digital,
whole brain, post-mortem datasets. The fact that recent
advances in anatomical digital imaging techniques now permit
unrestricted visualization in multiple cut planes, and three-
dimensional regional or subregional analyses when appropriate
primary datasets are available (Spitzer & Whitlock 1992;
Wertheim 1989), made this approach feasible. Digital represent-
ations also o¡er the opportunity for morphometric comparisons
and sophisticated mapping between anatomical and metabolic
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Figure 8. Coronal image demonstrating tritiated muscarinic
receptors from one hemisphere of a cryosectioned brain
and demonstrating the anatomical detail that such
chemoarchitectural maps can provide. When serial sections
are obtained and stained for a wide range of receptors,
anatomical features and gene expression maps, a tremendous
wealth of information is available for comparison with sites of
functional activation obtained using in vivo techniques and
macroscopic brain structure (gyri, sulci, deep nuclei, white
matter tracts). Having a probabilistic strategy for relating
these di¡erent types of anatomies will provide previously
unavailable insights about the relationship of structure and
function on both microscopic and macroscopic levels for the
human brain and, by analogy, for the brains of other species
(see ¢gures 5 and 9). The analysis of the regional and laminar
distribution patterns of transmitter receptors is a powerful tool
for revealing the architectonic organization of the human
cerebral cortex. We succeeded in preparing extra-large serial
cryostat sections through an un¢xed and deep-frozen human
hemisphere. Neighbouring sections were incubated with
tritiated ligands for the demonstration of 15 di¡erent receptors
of all classical transmitter systems. The distribution of
[3H]oxotremorine-M binding to cholinergic muscarinic M2
receptors is shown here as an example. Even a cursory
inspection of a colour-coded receptor autoradiograph permits
the distinction of numerous borders of cortical areas and
subcortical nuclei by localized changes in receptor density and
regional/laminar patterns. For example, the M2 receptor
subtype clearly labels the primary sensory cortices (at the
level of the section shown in the ¢gure, e.g. the primary
somatosensory area BA3b and the primary auditory area
BA41) by very high receptor densities sharply restricted to
both areas. The di¡erent receptors allow the multi-modal
molecular characterization of each area or nucleus by the
so-called receptor ¢ngerprint typing. A receptor ¢ngerprint
of a brain region consists of a polar plot based on the mean
density of each receptor in the same architectonical unit
(area, nucleus, layer, module, striosome, etc.). The following
areas and nuclei could be delineated in the present example:
(i) cingulate cortex; (ii) motor cortex; (iii) primary
somatosensory cortex (BA3b); (iv) inferior parietal cortex;

(v) insular cortex; (vi) primary auditory cortex (BA41);
(vii) non-primary auditory cortex; (viii) inferior temporal
association cortex; (ix) entorhinal cortex; (x) mediodorsal
thalamic nucleus; and (xi) putamen (K. Zilles, A. Toga,
N. Palomero-Gallagher and J. Mazziotta, unpublished data).



imaging modalities (Payne & Toga 1990; Toga & Arnicar-Sulze
1987). The primary source data for human brain atlasing must
include not only very ¢ne spatial detail but also image colour
and texture to convey the subtle characteristics that make it
possible to distinguish subnuclear and laminar di¡erences.
Furthermore, the incorporation of an appropriate spatial coordi-
nate system is critical as a framework for inter-subject morpho-
metrics. High-resolution anatomical datasets serve as references
for the accurate interpretation of clinical data from the PET,
computed tomography (CT) and MRI modalities as well as the
mapping of transmitters, their receptors (¢gure 8) and other
regional biological characteristics.

Thus, we have designed a system of histological and digital
processing protocols for the acquisition of high resolution,
digital imagery from post-mortem cryosectioned whole human
brain and head for computer-based, three-dimensional repre-
sentation and visualization (Cannestra et al. 1997; Toga et al.
1997). High-resolution (10242 pixel) serial images can be
captured directly from a cryoplaned blockface using an inte-
grated colour digital camera and ¢bre-optic illumination system
mounted over a modi¢ed cryomacrotome. The system can
process tissue treated in a variety of ways, including ¢xed, fresh,
frozen or otherwise prepared for sectioning at micrometre incre-
ments. Sometimes it is desirable to section the tissue while still
in situ. Specimens frozen and sectioned with the cranium intact
preserve brain spatial relationships and anatomical bony land-
marks. Colour preservation is superior in un¢xed tissue but
un¢xed heads were incompatible with decalci¢cation and cryo-
protection procedures. Thus, section collection from such speci-
mens was complicated by bone fragmentation. Collection of
10242 images from whole brains results in a spatial resolution of
200 mm/pixel in a 1^3 gigabyte data space. Even higher three-
dimensional spatial resolution is possible by primary image
capture of selected regions such as hippocampus or brainstem or
by using higher resolution cameras. Discrete registration errors
can be corrected using image processing strategies such as cross-
correlative and other algorithmic approaches. Datasets are
amenable to resampling in multiple planes as well as scaling and
transpositioning into standard coordinate systems. These
methods enable quantitative measurements for comparison
between subjects or to atlas data. These techniques allow visuali-
zation and measurement at resolutions far higher than those
available through other in vivo imaging technologies, and
provide greatly enhanced contrast for delineation of neuroanato-
mical structures, pathways and subregions.

The use of cryosectioned anatomical images as a gold stan-
dard for mapping the human brain requires a complete under-
standing of the assumptions and errors introduced by this
method. While there are several obvious advantages to using
these data as a reference for other tomographic and in vivo
mappings, their collection requires sophisticated instrumenta-
tion and representative post-mortem material. Spatial resolu-
tion, the inclusion of bony anatomy, full colour, blockface
reference for histologically stained sections and the resulting
registered three-dimensional volumetric datasets are important
aspects of this method. Nevertheless, cryosectioning approaches,
like all others, introduce distortion during acquisition and
processing. Sources of errors include post-mortem brain changes
and artefacts associated with tissue handling. A major source of
error is related to specimen preparation prior to sectioning.
Removal of the cranium and subsequent brain deformation,
perfusion protocols or freezing altered the spatial con¢guration
of the dataset.

While three-dimensional data at this resolution is di¤cult to
acquire, it is necessary for careful studies of morphometric
variability and the generation of digital comprehensive neuro-
anatomical atlases (Thompson et al. 1995). Ultimately, what is
needed is the combined use of cryosectioned data as the source
of higher resolution raw and stained anatomy spatially refer-
enced to an in vivo electronically, acquired dataset such as those
obtained with MRI.

(ii) Cyto- and chemoarchitecture
A major e¡ort in this project is to obtain cyto- and

chemoarchitectural data from post-mortem brains to enter into
the probabilistic database for comparison with in vivo studies. An
example of this approach is described for Broca’s area. The
putative anatomical correlates of Broca’s speech region, i.e.
Brodmann’s areas 44 and 45 (Brodmann 1909), are of consider-
able interest in functional imaging studies of language. It is a
long-standing matter of discussion whether or not anatomical
features are associated with the functional lateralization of speech
(Galaburda 1980; Hayes & Lewis 1995, 1996; Jacobs et al. 1993;
Simonds & Scheibel 1989; Scheibel et al. 1985). Furthermore, the
precise position and extent of both areas in stereotaxic space
and their inter-subject variability still remain to be analysed,
since Brodmann’s delineation is highly schematic, not docu-
mented in su¤cient detail and does not contain any statement
about inter-subject variability.

We studied the cytoarchitecture of Brodmann’s areas 44 and
45 in ten human post-mortem brains using cell body-stained
(Merker 1983) 20 mm thick serial sections through complete
brains (Amunts et al. 1999). Cytoarchitectonic borders of both
areas were de¢ned using an observer-independent approach,
which is based on the automated high resolution analysis of the
packing density of cell bodies (grey level index, GLI) from the
border between layers I and II of the cortex^white matter
junction (Schleicher et al. 1999). These pro¢les are perpendi-
cular to the cortical surface and de¢ne the laminar pattern of
cell bodies. Thus, the pro¢les are a quantitative expression of
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Figure 9. Location and extent of Broca’s region (Brodmann
areas 44 and 45). Areas 44 and 45 as de¢ned in serial coronal
sections of an individual brain after three-dimensional
reconstruction; lateral views of the left hemisphere.
Probability maps of Broca’s region, based on microscopic
analysis of ten human brains can be referenced, also in a
probabilistic fashion, to functional activation sites associated
with the functions of Broca’s area using the multimodality
probabilistic atlas strategy. The overlap of individual
post-mortem brains is colour-coded for each voxel of the
reference brain (colour bar), e.g. seven out of ten brains
overlapped in the yellow-marked voxels. Left in the image is
left in the brain.



the most important cytoarchitectonic feature. Multivariate
statistical analysis was used for locating signi¢cant di¡erences
between the shapes of adjacent GLI pro¢les along the cortical
extent. Those locations represent cytoarchitectonic borders.
GLI pro¢les were also used for investigating inter-hemispheric
di¡erences in cytoarchitecture. Signi¢cant inter-hemispheric
di¡erences in cytoarchitecture (i.e. di¡erences in GLI pro¢les
between right and left areas) were found in both areas 44 and
45. Pro¢les obtained as internal controls from the neighbouring
ventral premotor cortex did not show any lateralization.

The position of the borders of areas 44 and 45 with respect to
sulci and gyri showed a high degree of inter-subject variability
(¢gure 9). This concerned the sulcal pattern, i.e. the presence,
course and depths of sulci, as well as the spatial relation of areal
borders with these sulci. The position of a cytoarchitectonic
border could vary by up to 1.5 cm with respect to the bottom of
one and the same sulcus in di¡erent brains. Thus, sulci and gyri
are not reliable and precise markers of cytoarchitectonic borders.
Although there was a considerable inter-subject variability in
volume of areas 44 and 45 (n ˆ 10), area 44 was larger on the left
than on the right side in all cases of our sample.We could not ¢nd
any signi¢cant left^right di¡erences in the volume of area 45.

The extent and position of areas 44 and 45 were analysed in
the three-dimensional space of the standard reference brain of
the European Computerized Human Brain Database (Roland
& Zilles 1996) after the above described microstructural de¢ni-
tion of the areal borders. MR imaging (3-D FLASH-scan,
Siemens 1.5 T Magnet) was performed on post-mortem brains
prior to histology. Corrections of deformations inevitably caused
by the histological technique were performed by matching MRI
and corresponding histological volumes (Schormann & Zilles
1997; Schormann et al. 1995). Brain volumes were ¢nally trans-
formed to the spatial format of the reference brain. For both
steps, a movement model for large deformations was applied
(Schormann et al. 1997; Schormann et al. 1996; Schormann &
Zilles 1998). The superimposition of individual cytoarchitectonic
areas in the standard reference format resulted in probability
maps (¢gure 9). These maps quantitatively describe the degree
of inter-subject variability in extent and position of both areas.
They serve as a basis for topographical interpretations of
functional imaging data obtained in PETand fMRI experiments
(Amunts et al. 1998).

The observed inter-subject variability in the extent and
cytoarchitecture of Broca’s region has to be considered when
correlating data of functional imaging studies with the under-
lying cortical structures. Inter-hemispheric di¡erences in the
volume of area 44 and in the cytoarchitecture of both areas may
contribute to functional lateralization which is associated with
Broca’s region.

(c) Warping and segmentation strategies
(i) Segmentation

Manual voxel segmentation and labelling
We developed a general image analysis package, DISPLAY,

which provides a wide range of capabilities for: (i) interactive
three-dimensional exploration of image volumes using simulta-
neous orthogonal planes and surface-rendered representations;
(ii) manual labelling of image voxels ; (iii) archival/recall of
labelled three-dimensional objects such as brain regions,
pathological masses, tissue class maps, etc.; and (iv) morpholo-
gical operations such as the dilate/erode/open/close primitives.
DISPLAY has become a standard utility within the ICBM
consortium, and elsewhere, for labelling brain regions (Evans et
al. 1996; Paus et al. 1996a,b; Penhune et al. 1996). However, the
use of manual tools for labelling large numbers of MRI datasets
is prohibitively time-consuming and subject to inter-rater varia-
bility. We have therefore developed a series of algorithms for
automated image segmentation (¢gure 10).

Correction for three-dimensional intensity non-uniformityöN3
A major problem for automated MRI image segmentation

is the slowly varying change in signal intensity over the
image, caused principally by non-uniformities in the radio-
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Figure 10. (a) Autosegmentation of structures. This image
illustrates the ¢rst stage of autosegmentation once the brain
has been spatially normalized. Lobes, gyri and some
subcortical nuclei are labelled. This iterative process continues
with increasing re¢nement. (b) Three-dimensional model
with autosegmented ventricular system. This model shows
an autosegmented ventricular system converted to a surface
model enabling morphometric statistics to be calculated.
This segmentation was a combination of tissue classi¢cation
approaches (note the intensity gradient of CSF to grey (white
matter is high) and template matching following spatial
normalization).



frequency ¢eld. Apparent signal from any one tissue type is
therefore di¡erent from one brain area to another, confusing
automated segmentation algorithms that assume constant
signal for one tissue type. We have developed a fully auto-
mated three-dimensional technique for inhomogeneity correc-
tion. The method maximizes the entropy of the intensity
histogram to maximize its structure. The e¡ect of inhomogeneity
is modelled as a convolution histogram by a blurring kernel and
the e¡ective kernel can be estimated and deconvolved by itera-
tive entropy maximization. The method is applicable to any
pulse sequence, ¢eld strength and scanner (Sled et al. 1997,
1998). In the previously described competition among algo-
rithms, the N3 approach of Sled et al. (1997, 1998) proved
superior (Arnold et al. 2001) and has been selected for the
ICBM data analysis pipeline.

Tissue classi¢cationöintensity normalized stereotaxic environment
for classi¢cation of tissues (INSECT)

We have developed a series of algorithms for tissue classi¢ca-
tion (Kamber et al. 1992, 1995; Zijdenbos et al. 1996). They are
used for automatically processing multi-spectral (T1-, T2-,
proton density (PD)-weighted) datasets from large numbers of
subjects, known as INSECT (intensity normalized stereotaxic
environment for classi¢cation of tissues). All data are corrected
for ¢eld inhomogeneity (Sled et al. 1998), inter-slice normal-
ization and inter-subject intensity normalization. Stereotaxic
transformation is then performed (Collins et al. 1994) and an arti-
¢cial neural network classi¢er identi¢es grey/white/cerebrospinal
£uid (CSF) tissue types (Zijdenbos et al. 1996; Evans et al. 1997).

These same tissue classi¢cation strategies are equally applic-
able for population analysis of patients with brain disorders and
for tracking structural change over time, such as the progressive
tissue atrophy that occurs in some degenerative diseases. We
present one illustrative example of this approach, drawn from a
clinical trial of a new treatment for MS which used MRI obser-
vations as a surrogate marker for disease activity (Zijdenbos et al.
1996). Multi-spectral MRI data were collected at 14 sites in
North America from 460 patients with relapsing^remitting MS.
A total of 1850 datasets were available, each consisting of T1-,
T2- and PD-weighted volumes. After correction for MRI inten-
sity inhomogeneity, interslice and intervolume intensity normal-
ization, and stereotaxic transformation, the multi-spectral data
were tissue classi¢ed to identify MS lesion voxels for each patient
timepoint. Figure 11 shows a three-dimensional rendering of the
probabilities for lesion distribution obtained from all datasets.
This shows the most likely locations for MS lesions within a
population and is a convenient way to distil a large amount of
population data into a single entity. Tests of drug e¡ect are
reduced to testing for a signi¢cant group di¡erence in the overall
volume of this distribution above a given threshold when parti-
tioned into drug and placebo groups. Tests for regional drug
e¡ects, i.e. changes in regional lesion probability, between groups
become equivalent to the familiar test for cerebral blood £ow
(CBF) change between two stimulus conditions, using the same
statistical models as are used for detection of functional changes
in activation experiments with PETand fMRI (Evans et al. 1997).
Importantly, this approach allows for rapid re-analysis of clinical
trial data in response to: (i) new hypotheses; (ii) modi¢cation of
the input data for discriminating lesion and non-lesion (types of
image, noise ¢ltering, image blurring); or (iii) modi¢cation of
criteria for identifying lesions (threshold values for lesion prob-
ability, spatial constraints on lesion location, minimum voxels
per lesion, etc.). This approach makes it feasible to extract the

considerable and usually untapped information available in large
clinical trial image databases.

Regional parcellationöANIMAL
Manual labelling of brain voxels is both time-consuming and

subjective. We have developed an automated algorithm to
perform this labelling in three dimensions (Collins et al. 1995).
The ANIMAL algorithm (automated non-linear image
matching and anatomical labelling) deforms one MRI volume
to match another, previously labelled, MRI volume. It builds
the three-dimensional, non-linear deformation ¢eld in a piece-
wise linear fashion, ¢tting cubical neighbourhoods in sequence.
The algorithm is applied iteratively in a multi-scale hierarchy.
At each step, image volumes are convolved with a three-
dimensional Gaussian blurring kernel of successively smaller
width (32, 16, 8, 4 and 2 mm full width at half maximum
(FWHM)). Anatomical labels are de¢ned in the new volume by
interpolation from the original labels, via the spatial mapping of
the three-dimensional deformation ¢eld.

(ii) Warping strategies
Atlases can be greatly improved if they are elastically deform-

able and can ¢t new image sets from incoming subjects. Local
warping transformations (including local dilations, contractions
and shearing) can adapt the shape of a digital atlas to re£ect the
anatomy of an individual subject, producing an individualized
brain atlas. Introduced by Bajcsy and colleagues at the Univer-
sity of Pennsylvania (Broit 1981; Bajcsy & Kovacic 1989; Gee
et al. 1993, 1995), this approach was adopted by the Karolinska
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Figure 11. Probabilistic atlas of multiple sclerosis (MS). This
image is produced from 460 patients with MS derived from
5800 individual pulse sequences. The green areas demonstrate
the probabilistic location of the actual MS plaques in the
population referenced to the human ventricular system (red).
This strategy gives a composite view of overall disease burden
across a large population. Consider its use in a clinical trial
where these patients were randomly assigned to treatment
groups that included placebo, conventional therapy and
experimental therapy. By following the group for some period
of time and serially imaging them, an automated, quanti¢able
and objective measure of the relative e¡ect of experimental
therapy versus conventional therapy and the natural history
of the disease could be obtained using MRI lesions as a
surrogate marker of disease burden. Such strategies should
lead to more e¤cient and cost-e¡ective clinical trials.



Brain Atlas Program (Seitz et al. 1990; Thurfjell et al. 1993;
Ingvar et al. 1994), where warping transformations were applied
to a digital cryosectioned atlas to adapt it to individual CT or
MR data and co-registered functional scans.

Image warping algorithms, speci¢cally designed to handle
three-dimensional neuroanatomical data (Christensen et al.
1993; 1996; Collins et al. 1994, 1995; Thirion 1995; Rabbitt et al.
1995; Davatzikos, 1996; Thompson & Toga 1996; Bro-Nielsen &
Gramkow 1996; Schormann et al. 1996, 1997; Schormann &
Zilles 1998; Ashburner et al. 1997; Woods et al. 1998) can transfer
all the information in a three-dimensional digital brain atlas
onto the scan of any given subject, while respecting the intricate
patterns of structural variation in their anatomy. These transfor-
mations must allow any segment of the atlas anatomy to grow,
shrink, twist and rotate, to produce a transformation that
encodes local di¡erences in topography from one individual to
another. Deformable atlases (Seitz et al. 1990; Evans et al. 1991;
Miller et al. 1993; Gee et al. 1993; Christensen et al. 1993; Sandor
& Leahy 1994; 1995; Rizzo et al. 1995) resulting from these
transformations can carry three-dimensional maps of functional
and vascular territories into the coordinate system of di¡erent
subjects. The transformations can also be used to equate infor-
mation on di¡erent tissue types, boundaries of cytoarchitectonic
¢elds and their neurochemical composition (Amunts et al. 1998,
1999, 2000; Geyer et al. 1996, 1997, 1999, 2001).

Warping algorithms calculate a three-dimensional deforma-
tion ¢eld that can be used to non-linearly register one brain
with another (or with a neuroanatomical atlas). The resultant
deformation ¢elds can be used subsequently to transfer physiolo-
gical data from di¡erent individuals to a single anatomical
template (Geyer et al. 1996; Larsson et al. 1999; Naito et al. 1999,
2000; BodegÔrd et al. 2000a,b). This enables functional data
from di¡erent subjects to be compared and integrated in a
context where confounding e¡ects of anatomical shape di¡er-
ences are factored out. Non-linear registration algorithms, there-
fore, support the integration of multi-subject brain data in a
stereotaxic framework, and are increasingly used in functional
image analysis packages (Seitz et al. 1990; Friston et al. 1995).

Any successful warping transform for cross-subject registra-
tion of brain data must be high-dimensional, in order to accom-
modate ¢ne anatomical variations (Christensen et al. 1996;
Thompson & Toga 1998). This warping is required to bring the
atlas anatomy into structural correspondence with the target
scan at a very local level. Another di¤culty arises from the fact
that the topology and connectivity of the deforming atlas have
to be maintained under these complex transforms. This is di¤-
cult to achieve in traditional image warping manipulations
(Christensen et al. 1995). Physical continuum models of the
deformation address these di¤culties by considering the
deforming atlas image to be embedded in a three-dimensional
deformable medium, which can be either an elastic material or a
viscous £uid (Schormann et al. 1996). The medium is subjected
to certain distributed internal forces that recon¢gure the
medium and eventually lead the image to match the target.
These forces can be based mathematically on the local intensity
patterns in the datasets, with local forces designed to match
image regions of similar intensity.

(iii) Automated methods
The inter-subject di¡erences in the anatomy of the brain can

be large, even after alignment, making anatomical segmenta-
tion inaccurate (Galaburda et al. 1978; Geschwind & Levitsky
1968; Gur et al. 1980; Steinmetz et al. 1991; Zilles et al. 1995,

1997). Without any perceived pathology, structures in the brain
can di¡er in shape and size, as well as in relative orientation
(Roland & Zilles 1994; Mazziotta et al. 1995a,b). A¤ne trans-
formation is often insu¤cient for the labelling and segmenta-
tion of structures. Automated image registration algorithms can
be used to align MR data with previously labelled and
segmented brains by maximizing a measure of intensity simi-
larity, such as three-dimensional cross-correlation (Collins et al.
1994), ratio image uniformity (Woods et al. 1992), or mutual
information (Viola & Wells 1997; Wells et al. 1997). These tech-
niques can be used in a non-linear fashion to obtain better
results, but they still develop errors with small structures and
in the borders of larger structures. The following steps have
been used:

(i) Each pulse sequence for each subject is intensity normal-
ized within and between slices.

(ii) Pulse sequences are aligned and registered within subjects
(between pulse sequences) using AIR (Woods et al. 1992).

(iii) The intensity normalized and aligned datasets from each
subject are spatially normalized to our labelled target.

(iv) Skull and scalp stripping is accomplished using the Leahy
algorithm (Sandor & Leahy 1997).

(v) Manual editing and segmentation is performed with SEG
(UCLA) or DISPLAY (MNI).

To ensure accuracy, a previously labelled atlas is registered to
the target brain via a non-linear technique that captures the
desired structures in the region of interest (ROI) de¢ned by a
probability density of where the structure of interest lies. An
iterative procedure is used by which the ROI in the atlas is
registered to the ROI projected into the target brain via a high-
dimensional warping technique that allows all segments of the
anatomy to grow, shrink, twist and rotate. The ROI can then be
re¢ned to include greater detail and a closer approximation to
the desired structure. The re¢ned ROI in the atlas is again regis-
tered with the high-dimensional techniques to the target brain.
This is repeated until the ROI is equal to the desired anatomical
structure, within some allowed error estimate. In this way, a
successive approximation, from lobar, to gyral, to subgyral, to
nuclear resolution labels, can be achieved.

The registration techniques for the high-dimensional warps
do not have to be limited to the previously mentioned intensity
based techniques. Edges and surfaces can be automatically
computed and used to determine boundaries of structures
(Sandor & Leahy 1997; Lohmann 1998; Duta et al. 1999;
LeGoualher et al. 1999, Zhou et al. 1998; Zhou & Toga 1999).
These boundaries can be aligned and used to align the tissue
that surrounds them via continuum mechanical techniques
guiding the tissue £ow (Thompson et al. 1996a,b).

Ultimately, it is the combination of di¡erent registration
techniques in the proper order that archive a registration accu-
rate enough to transfer the boundaries of one segmentation in
the atlas to that of the target volume. When combined with the
automated selection of a given atlas from a database of popula-
tions and the use of probabilistic information from the template
associated with the class of interest, it will be possible to accu-
rately label and segment any digital brain volume.

(d) Surface methods
(i) Surface extraction

Vast numbers of anatomical models can be stored in a
population-based atlas (Thompson & Toga 1997, 2000c). These
models provide detailed information on the three-dimensional
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geometry of the brain and how it varies in a population. By
averaging models across multiple subjects, subtle features of
brain structure emerge that are obscured in an individual due to
wide cross-subject di¡erences in anatomy (Thompson et al.
2000b,c). These modelling approaches have recently uncovered
striking patterns of disease-speci¢c structural di¡erences in
Alzheimer’s disease (Thompson et al. 1997, 1998, 2000b), schizo-
phrenia (Narr et al. 2000) and fetal alcohol syndrome (Sowell
et al. 2001), as well as strong linkages between patterns of
cortical organization and age (Thompson et al. 2000a), gender
(Thompson et al. 2000b), cognitive scores (Mega et al. 1997) and
genotype (Le Goualher et al. 2001). To illustrate the approach,
¢gure 12 shows a model of the lateral ventricles in which each
element is represented by a three-dimensional surface mesh.
These surface models can often be extracted automatically from
image data, using recently developed algorithms based on
deformable parametric surfaces (Thompson & Toga 1996;
Thompson et al. 1996a,b; MacDonald 1998) or voxel-coding
(Zhou & Toga 1999). Once an identical computational grid (or
surface mesh) is imposed on the same structure in di¡erent
subjects, an average anatomical model can be created for a group.
This is done by averaging the three-dimensional coordinate loca-
tions of boundary points that correspond across subjects.

Figures 12b and 12c show average ventricular models from a
group of patients with Alzheimer’s disease (n ˆ 10) and from
matched elderly controls (n ˆ 10). Not only are the ventricles
larger in the patients but a prominent ventricular asymmetry
(left larger than right) is found in both groups, a feature that
only emerges after surface averaging. Specialized approaches
for averaging cortical anatomy can also be used to generate
population-based maps of brain asymmetry (¢gure 12d) and to

investigate its alteration in disease (Thompson et al. 2000b; Narr
et al. 2000). Cortical anatomy can also be compared across
subjects and its variability encoded to guide the detection of
abnormal anatomy (Thompson et al. 1997). Figure 12e shows an
individual’s cortex (brown mesh) overlaid on an average cortical
model for a group. Di¡erences in cortical patterns can be
encoded by computing a three-dimensional elastic deformation
that recon¢gures the average cortex into the shape of the indivi-
dual, matching elements of the gyral pattern exactly (¢gure
12f ). These deformation ¢elds store detailed information on
individual deviations and can be averaged across subjects to
create three-dimensional variability maps, revealing funda-
mental patterns of anatomical variability in the brain (¢gure
12g). The resulting con¢dence limits on the locations of cortical
structures can be used in Bayesian approaches to guide the auto-
mated labelling of gyri and sulci (Pitiot et al. 2001), and to map
pro¢les of abnormal anatomy in an individual patient or group
of subjects (Thompson et al. 1995, 1997, 2000b,c; Cao & Worsley
1999).

This strategy has been used to develop atlases and analysis
methods for disease states. Speci¢cally, it is both practical and
desirable to build disease-speci¢c atlases in order to observe the
natural history of a disorder, compare it with normal, age-
matched subjects, and to use the disease-speci¢c atlas as a
comparison with populations of subjects undergoing conventional
or experimental therapies. In this fashion, it is possible to have
quanti¢able, objective and automated means by which to
examine brain structure and function in the normal state and
under pathological conditions, as well as during interventions
designed to ameliorate or reduce the impact of the disorder. Such
an approach using imaging as a surrogate marker of disease
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Figure 12. Surface models. Three-dimensional models can be created to represent major structural and functional interfaces in
the brain. Panel (a) shows a model of the lateral ventricles, in which each element is a three-dimensional parametric surface
mesh. Panels (b) and (c) show average ventricular models from a group of patients with Alzheimer’s disease (n ˆ 10) and
matched elderly controls (n ˆ 10). Note the larger ventricles in the patients and a prominent ventricular asymmetry (left larger
than right). These features only emerge after averaging models for groups of subjects. Average population maps of cortical
anatomy (d) reveal a clear asymmetry of the perisylvian cortex. Panel (e) shows an individual’s cortex (brown mesh) overlaid on
an average cortical model for a group. Di¡erences in cortical patterns are encoded by computing a three-dimensional elastic
deformation ( f ) (pink colours, large deformation) that recon¢gures the average cortex into the shape of the individual, matching
elements of the gyral pattern exactly. These deformation ¢elds provide detailed information on individual deviations and can be
averaged across subjects to create three-dimensional variability maps, demonstrating fundamental patterns of anatomical
variability in the brain (g) (Thompson et al. 2000c). Tensor maps using colour ellipsoids (h) reveal the directions in which
anatomical variation is greatest. The ellipsoids are more elongated in the directions in which structures tend to vary the most.
Pink colours denote the largest variation while blue colours show the least. These statistical data can be used to detect patterns
of abnormal anatomy in new subjects. Severe abnormality is detected (red colours) while corresponding regions in a matched
elderly control subject are signalled as normal.



burden may greatly facilitate clinical therapeutic trials by
providing objectivity and a quanti¢able surrogate endpoint, both
of which should increase the cost-e¡ectiveness of these expensive
undertakings.

Alzheimer’s disease
Probabilistic atlases based on diseased populations

(Thompson et al. 2000b,c) show enormous promise in advancing
our understanding of disease. As imaging studies expand into
ever-larger patient populations, population-based brain atlases
o¡er a powerful framework to synthesize the results of disparate
imaging studies. Disease-speci¢c atlases, for example, are a type
of probabilistic atlas specialized to represent a particular clinical
group (see Thompson et al. 2000b, for a review). A disease-
speci¢c atlas of brain in Alzheimer’s disease has recently been
generated to re£ect the unique anatomy and physiology of this
subpopulation (Thompson et al. 1997, 1998, 2000b; Mega et al.
1997, 1998, 1999). Based on well-characterized patient groups,
this atlas contains thousands of structure models as well as
composite maps, average templates and visualizations of struc-
tural variability, asymmetry and group-speci¢c di¡erences. It
also correlates the structural, metabolic, molecular and histolo-
gical hallmarks of the disease (Mega et al. 1997, 1999, 2000).
Additional algorithms use information stored in the atlas to
recognize anomalies and label structures in new patients.
Because they retain information on group anatomical varia-
bility, the resulting atlases can identify patterns of altered
structure or function and can guide algorithms for knowledge-
based image analysis, automated image labelling (Collins et al.
1994; Pitiot et al. 2001), tissue classi¢cation (Zijdenbos &
Dawant 1994) and functional image analysis (Dinov et al. 2000).
At the core of the atlas is an average MRI dataset based on a
population of subjects with early dementia (¢gure 13). Using
specialized mathematical approaches for averaging cortical
anatomy, the resulting average MRI template has a well-
resolved cortical pattern (¢gure 13a) with the mean geometry of
the patient group (Thompson et al. 2000b). Surfaces for the
cortex can include the external hull, the grey^white matter

interface or an average of the full cortical thickness. Figure 13b
represents the external hull.

An example application of this type of atlas is in resolving
the average pro¢le of early grey matter loss in an Alzheimer’s
disease population. It would be ideal, for example, to calibrate
the pro¢le of grey matter loss in an individual patient against a
normative reference population, for early diagnosis or for
clinical trials. Since individual variations in cortical patterning
complicate the comparison of grey matter pro¢les across
subjects, an elastic matching technique can be used (driven by
84 structures per brain) that elastically deforms each brain into
the group mean geometrical con¢guration (¢gure 13b). By aver-
aging a measure of grey matter across corresponding regions of
cortex, these shape di¡erences are factored out. The net reduc-
tion in grey matter, in a large patient population relative to
controls (n ˆ 46), can then be plotted as a statistical map in the
atlas (¢gure 13b; Thompson et al. 2000b). This type of analysis
uncovers important systematic trends, with an early pro¢le of
severe grey matter loss detected in temporoparietal cortices,
consistent with the early distribution of neuronal loss, metabolic
change and perfusion de¢cits at this stage of Alzheimer’s
disease. Finally, this local encoding of information on cortical
variation can also be exploited to map abnormal atrophy in an
individual patient (Thompson et al. 1997). Figures 12f and 13b
illustrate the use of a probabilistic atlas to identify a region of
abnormal atrophy in the frontal cortex of a dementia patient.
Severe abnormality is detected, with a colour code used to indi-
cate the signi¢cance of the abnormality (red colours). As
expected, corresponding regions in a matched elderly control
subject are signalled as normal (¢gure 13b).

(ii) Cortical surface analysis algorithms
Cortical surface segmentation

Multiple surface deformation (MSD) is a fully-automated
procedure for ¢tting and unfolding the entire human cortex,
using an algorithm which automatically ¢ts a three-dimensional
mesh model to the cortical surface extracted from MRI. MSD
uses an iterative minimization of a cost function that balances
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Figure 13. Disease-speci¢c brain atlases. Disease-speci¢c brain atlases re£ect the unique anatomy and physiology of a clinical
population, in this case an Alzheimer’s disease population. Using mathematical strategies to average cortical anatomy across
subjects (Thompson et al. 2000b,c), an average MRI template can be generated for a speci¢c patient group, in this case nine
patients with mild to moderate Alzheimer’s disease. The cortical pattern indicates clear sulcal widening and atrophic change,
especially in temporoparietal cortices. By averaging a measure of grey matter across corresponding cortical regions, the average
pro¢les of grey matter loss can also be mapped. The net reduction in grey matter, in a large patient population relative to
controls (Thompson et al. 2000c) can then be plotted as a statistical map in the atlas. This type of analysis uncovers pro¢les of
early anatomical change in disease. By encoding variations in gyral patterns and grey matter distribution, algorithms can detect
a region of abnormal atrophy in the frontal cortex of a dementia patient.



the distance of the deforming surface from: (i) the target
surface; and (ii) the previous iteration surface. Speci¢cation of
the relative weight of these competing forces allows MSD to
range from unconstrained (data driven) deformation to tightly
constrained (model preserving) deformation. Further shape
preserving constraints are also employed. The initial mesh
surface can be chosen arbitrarily to be a simple geometric
object, such as a sphere, an ellipsoid or two independently ¢tted
hemispheres (MacDonald et al. 1994). Recently, MSD has been
extended to allow simultaneous extraction of both inner and
outer surfaces of the cortical mantle, using linked concentric
mesh models (MacDonald et al. 2000). Corresponding vertices
in each surface are elastically linked using distance range
constraints. Inter-surface cross-intersection and intra-surface
self-intersection constraints prevent impossible topologies. These
two factors allow for a deeper penetration of the deforming
surfaces into the cortical sulci since areas where infolding of the
outer (grey^CSF) boundary is indistinct due to partial volume
e¡ects are areas where the inner (grey^white) boundary is
usually well-distinguished. MSD can operate upon raw image
intensity or upon fuzzy-classi¢ed tissue maps. Extraction of both
surfaces yields a measurement of cortical thickness at each
surface vertex. The thickness measurement can be de¢ned in a
variety of ways: (i) distance between corresponding vertices;
(ii) closest approach of one surface to each vertex of the other
surface; (iii) distance between surfaces along the surface normal
at each vertex of one surface. These de¢nitions give rise to
di¡erent absolute values for cortical thickness (closest approach
must yield the smallest value, by de¢nition) but the variation in
thickness over the whole cortex is generally very similar among
the distance measures (MacDonald et al. 2000). The method has
been applied to a set of 102 MRI volumes from the ICBM data-
base that have been previously mapped automatically into
stereotaxic space (Collins et al. 1994) and used to generate
various group results by averaging the three-dimensional
location of corresponding vertices across subjects. The average
outer cortical surface obtained when simultaneously ¢tting both
surfaces exhibits a dramatic increase in detail compared with
that obtained when ¢tting only the outer surface, a consequence
of the deeper penetration into individual sulci. Since the average
cortex can be used as the starting point for mesh-modelling of
any individual surface, this is likely to lead to faster and more
accurate extraction of individual cortical surfaces in future.
Moreover, the average cortical surface is used by some groups to
constrain electrophysiological inverse solutions (e.g. Harmony
et al. 1999) and an improved speci¢cation of this surface can be
expected to improve that process. The cortical thickness maps
exhibit the expected variation in cortical thickness, the temporal
poles having the thickest cortex (4^6 mm) and the posterior
bank of the central sulcus having the thinnest (1.8^2.5 mm).

This approach has been tested against manual estimates for
twenty regions (ten per hemisphere) using 40 brain MRI
studies. Validity was determined by an anatomist labelling the
CSF^grey and grey^white borders of selected gyri and by
allowing the algorithm to determine the CSF^grey and grey^
white borders for the same region. The distance between the
CSF^grey and grey^white tags determined the cortical thick-
ness at that point. The manual and automatic methods were in
agreement for all but four out of 20 regions tested. The four
regions where the results were statistically di¡erent between the
two methods were the insula in both hemispheres, the cuneus
and the parahippocampus in the right hemisphere. Thus, the
automatic algorithm is valid for most of the cortex and

provides a reasonable alternative to manual in vivo measure-
ment except in regions where cortex is adjacent to other grey
matter structures.

Sulcal extraction and labelling
We have implemented an automated sulcal extraction and

labelling algorithm (SEAL) (LeGoualher et al. 1999, 2000). At
every voxel on the MSD isosurface, SEAL calculates the two
principal curvatures: the mean curvature and the Gaussian
curvature. Voxels with negative mean curvature, belonging to
sulci, are extracted and pruned to obtain a set of super¢cial
sulcal traces. SEAL extracts the buried sulcus with an àctive
ribbon’ that evolves in three dimensions from a super¢cial trace
to the bottom of a sulcus by optimizing an energy function
based on: (i) maximizing distance between starting and
current trace position (i.e. for increased penetration); (ii) maxi-
mizing distance to any other sulcal voxel (i.e. stay within
sulcus); and (iii) minimizing distance from the median sulcal
locus. To encode the extracted information, we de¢ned a rela-
tional graph structure composed of two main features: arcs
and vertices. Arcs contain a surface representing the interior of
a sulcus. Points on this surface are expressed in stereotaxic
coordinates. For each arc, length, depth and orientation are
stored, as well as attributes, e.g. hemisphere, lobe, sulcus type,
etc. Each vertex stores its three-dimensional location and its
connecting arcs. We have written functions to access this data
structure that allow a systematic description of the sulci them-
selves and their interconnections. Sulcal labelling is performed
semi-automatically within DISPLAY by tagging a sulcal trace
in the three-dimensional graph and selecting from a menu of
candidate labels. The menu is restricted to most likely candi-
dates by the use of spatial priors for sulcal distribution. Given
these spatial probability anatomical maps, the user is provided
with the probability that the selected arc belongs to a parti-
cular sulcus.

(e) Database
Several approaches can be used in the creation of databases to

accommodate the diversity of datatypes and structures needed
to represent brain structure and function adequately in four
dimensions. Whereas a map is a collection of informationöa
representation of our understanding of the brainöa database is
designed with more interactions in mind. Its function is to
organize and archive data records and provide an e¤cient and
comprehensive query mechanism. Modern digital maps have
only begun to incorporate database functionality.

One of the ¢rst database brain maps was developed by Bloom
et al. (Bloom et al. 1990). They created an electronic version of
atlas delineations from the Paxinos & Watson (1986) neuro-
anatomical atlas of the rat brain. These outlines were equated
with coordinates and nomenclature so that the user could
request information regarding structural groupings and systems.
Since the system was based upon a HyperCard (Apple
Computer Corp., Cupertino, CA) database, the user could add
information to this anatomical framework as an anatomy labora-
tory organizer. In a similar vein, Swanson (1992) provided a
digital version of his anatomical delineations to his atlas of the
rat brain. Cortical connectivity in the macaque monkey also has
been organized as a database (Felleman & Van Essen 1991). The
most sophisticated attempt in the human brain mapping litera-
ture is BrainMap (Fox et al. 1994; Fox & Lancaster 1994). This
database incorporates a true relational database structure
intended to encapsulate data from diverse studies of brain
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structure and function. The anatomical framework is based
upon the Talairach system and the database relates information
about the activation task, the methods, the bibliography and
other pertinent data. Usually the image data is excluded and
only boundary information is retained. We have chosen to
include source image data in the database in a manner that
supports both visualization and exploratory query. The query
modes include both spatial query of the source image data and
query based on a reference anatomical coordinate system.

(i) Four-dimensional
A four-dimensional database allows for the intuitive referen-

cing of information by time (age) and place in the nervous
system. This works well within a species but requires separate
atlases for any given species with links between them to be estab-
lished only when su¤cient information is available to identify
true anatomical or functional homologues between the two popu-
lations. Once established, the attributes associated with each
four-dimensional point could similarly be linked between
species-speci¢c atlases and their associated probability estimates.

(ii) Daemon and BrainMap
An automated coordinate-based system to retrieve brain

labels from the 1988 Talairach atlas, called the Talairach
daemon (TD), was previously introduced (Talairach &
Tournoux 1988; Lancaster et al. 1997). The TD system and its
three-dimensional database of labels for the 1988 Talairach
atlas were tested for labelling of functional activation foci. The
TD system labels were compared with author-designated
labels of activation coordinates from over 250 published, func-
tional brain-mapping studies and with manual atlas-derived
labels from an expert group using a subset of these activation
coordinates. Automated labelling by the TD system compared
well with authors’ labels, with a 70% or greater label match
averaged over all locations. Author^label matching improved
to greater than 90% within a search range of § 5 mm for
most sites. An adaptive grey matter (GM) range-search utility
was evaluated using individual activations from the M1 mouth
region (30 subjects, 52 sites). An 87% label match to Brod-
mann area labels (BA4 and BA6) was achieved within a
search range of § 5 mm. Using the adaptive GM range
search, the TD system’s overall match with authors’ labels
(90%) was better than that of an expert group (80%). When
used in concert with authors’ deeper knowledge of an experi-
ment, the TD system provides consistent and comprehensive
labels for brain activation foci. Additional suggested applica-
tions of the TD system include interactive labelling, anato-
mical grouping of activation foci, lesion-de¢cit analysis and
neuroanatomy education.

5. OTHER ISSUES

(a) Isolated brain regions
The more di¤cult problem than working with whole

brain three-dimensional datasets, is that of entering
microscopic data from brain sites that are analysed on a
regional basis (e.g. the study of the isolated hippo-
campus). Nevertheless, such data can also be incorporated
into the probabilistic reference system and atlas. Such a
problem will require landmarks to appropriately localize
regional data in the global atlas brain.

Consider a series of post-mortem cryomacrotome
human brains that are stained with a series of conven-

tional and commonly used neuroanatomical `landmark’
stains (e.g. Nissl, acetylcholinesterase). These sections
would be digitized and sampled at a 20 mm resolution.
The resultant datasets would be warped and entered into
the probabilistic atlas as an additional feature. Then
consider an investigator who studies gamma amino-
butyric acid (GABA) receptors in the human hippo-
campus. This investigator would like to see where the
receptors from the hippocampi of a given epileptic patient
population fall with regard to other data in the probabil-
istic reference system. In preparing the tissue, this investi-
gator would process every nth section using one of the
`landmark’ stains that are part of the probabilistic atlas.
The investigator would then digitize the information from
both the GABA receptor sections as well as the `land-
mark’ stained sections. Using alignment, registration and
warping tools that are part of the atlas system, the inves-
tigator would register the `landmark’ stained sections with
the atlas and then use the same mathematical transforma-
tions to enter the GABA receptor information into the
hippocampal region of the atlas. Once referenced, data-
base queries and visualization of this new data could be
performed in the atlas system. A similar approach allows
referencing between newly acquired in vivo data and
stored post-mortem specimens that should aid in relating
functional localization with macroscopic and microscopic
anatomy (Rademacher et al. 1992; Larsson et al. 1999;
Naito et al. 1999, 2000; BodegÔrd et al. 2000a,b).

(b) EEG/MEG
The ICBM atlas is based on neuroanatomy. This is

the most fundamental language of communication in
neuroscience. As such, it allows appropriate reference
and localization to any structure in the brain from any
signal source. In the development of the reference
system, cross-sectional and tomographic data have been
the initial datasets. Once established, however, appro-
priate vehicles for entering non-tomographic data will be
developed. For EEG data, for example, systems already
exist to localize scalp electrode placement three-
dimensionally, either through the use of a paired tomo-
graphic image set or by non-tomographic localization
methods (Gevins et al. 1994).

(c) Sociology
Any endeavour to organize information across labora-

tories, or especially across an entire ¢eld, requires atten-
tion to the sociology involved (Koslow 2000). Frustration
with existing methods must be high enough and the solu-
tions good enough (in terms of practicality, economics
and implementation) that it will be adopted. Such a tran-
sition is made easier if rigid new standards are not
imposed on the structure or organization of data gener-
ated in a given laboratory but rather the tools are
available to translate such data into the framework and
form required for interaction with the database and atlas.
This is a strategy we have employed. Perhaps the most
important, if not critical, step is the willingness on the
part of the community to share data in all its forms
(including raw data) to allow for the full implementation
of such a system. Such strategies will require participation
of traditional ¢nal end products of research (e.g. publica-
tion in journals) as well as academic recognition for data
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provided to such systems. Lastly, it is always important to
have a consensus from the community before embarking
on the construction of a complex system such as this one.
Wide participation, frequent requests for input and
distributed testing of products are all helpful in estab-
lishing a successful system that is accepted by the commu-
nity for which it is intended.

6. LIMITATIONS AND DELIVERABLES

(a) Deliverables
A project of this size and scope has a very large over-

head at the front end. This results in frustrations for the
participants as well as for the community that it is
intended to serve. Nevertheless, prior to the release of any
individual products (e.g. algorithms, datasets) or the atlas
itself, su¤cient documentation, validation and a critical
mass of test subjects must be acquired in order to be
con¢dent of the outcome. We have described our strategy
for developing a competitive approach to algorithm
development that has at least ¢ve phases: theory, initial
development, alpha testing, beta testing, and general
release. A number of such algorithms have already
completed this lengthy process. These include: AIR

(Woods et al. 1992, 1993, 1998) (now distributed to over
1300 laboratories worldwide), N3 (Sled et al. 1997, 1998)
(now available at http://www.bic.mni.mcgill.ca/software/
N3/), an MRI environment simulator (available at http://
www.bic.mni.mcgill.ca/brainweb/). Algorithms of other
components of the ICBM analysis pipeline are well on
their way through this competitive process and will be
released when complete. The same can be said of datasets.
In vivo MRI studies as well as cryosection datasets and
examples can be found at the ICBM website (http://
www.loni.ucla.edu/ICBM/).

In an attempt to allow the general neuroimaging and
neuroscienti¢c communities to have access to some of the
more basic data that has been collected thus far, we are in
the process of developing digital libraries. These libraries
were described above and will contain raw images (with
facial features corrupted), intensity normalized images
from multiple pulse sequences as well as normalized and
s̀calped’ multiple pulse sequences for each subject. This
will allow investigators to search for selected subpopula-
tions and use the resultant data for normal controls,
methodological developments and many other presently
unforeseen uses.

(b) Limitations
Every project has its limitations. This one is no

di¡erent. When faced with the opportunity to evaluate
7000 normal individuals, there is a tendency to be all-
inclusive and attempt to collect every potential type of
information available. At the onset of this study the
contributing investigators met and discussed all of the
possible datasets that could be collected from a human
subject. The list was long and will not be reiterated here.
We opted to start with those datasets that would provide
structural imaging of the highest resolution in the largest
number of subjects for the best price. We felt that in later
years, and in subsequent iterations, it might be possible to
add other datasets. In fact, this was done with the
addition of functional imaging using fMRI, PET and

event-related potentials. Nevertheless, it was not possible
to add information about the vasculature from MR
angiography, neurotransmitter systems through PET or
single photon emission computed tomography (SPECT)
ligand studies, cerebral perfusion through perfusion MRI
or PET, chemical information about the brain from MR
spectroscopy or datasets that describe major white matter
tracts in the brain using di¡usion tensor imaging or
connectivity using combinations of transcranial magnetic
stimulation and PET or fMRI. These are all issues that
would be extremely important and valuable to add in the
future. Those that have been selected and implemented
re£ect the basic criteria list noted above as well as the
realistic constraints associated with ¢nances, subject risk,
time burdens and institutional review board (IRB)
criteria. In fact, the reason that only 5800 of the 7000
subjects have DNA samples relates to IRB rules in certain
countries with regard to the collection and distribution of
genetic materials and information about subjects.

We believe that having neuroanatomy as the basis for
building the ICBM probabilistic atlas and reference system
was the logical and correct starting point. Other factors that
can be added as attributes will be a function of practicality,
¢nances and the interests of the ¢eld. They will also be
dictated by advances and developments in methodologies.

7. CONCLUSIONS

There is no question that the development of systems
and tools such as the probabilistic atlas will have a speci¢c
and not insigni¢cant cost associated with them. Also true
is the fact that increments in neuroscienti¢c research
funding have not kept pace with the growth of the ¢eld in
terms of numbers of investigators or the magnitude of their
projects. Is the cost worth the bene¢ts?

A thoughtful response to this question requires,
however, an honest appraisal of the ultimate goals of
neuroscienti¢c research. If such research is designed to
produce the most accurate understanding of normal brain
function and diseases that a¡ect it, then tools that will:
(i) enhance the accuracy of results; (ii) enhance the
comparison of results between subjects and laboratories ;
(iii) make more rigorous the con¢rmation or refutation of
data; and (iv) guard against its loss, should have a high
priority. A system such as a probabilistic atlas for a given
species, or potentially across species, provides a means by
which to rigorously store, compare and analyse data over
time and between laboratories. Such a system currently
does not exist. Furthermore, by virtue of data exchange
and comparison, integration within the broad ¢eld of
neuroscience will be enhanced.

One could rephrase the above statement into a question
and ask, `What would it cost not to develop such inte-
grated systems?’. The costs, in our opinion, would be the
progressive and there would be a continued reduction in
the value of all funds spent on future neuroscienti¢c
research because of the progressively unmanageable
amounts and types of data that are generated by neuro-
scientists. Lacking the tools to manage, compare and
analyse these datasets will make funds spent for their
acquisition of lesser impact than if such data could be
preserved and referenced in an ever-evolving and
integrated approach.
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Clearly, it would be optimal if funding could come
from new sources for systems and approaches to integrate
data across not only neuroscience but also computer
science, informatics and potentially other related ¢elds.
In fact, this is already happening. Contributions to the
funding of the initial round of the Human Brain Project
(Huerta et al. 1993) in the USA came from sources that
are both traditional and novel for funding neuroscienti¢c
research. By having small contributions from many
countries and agencies, the burden on any one country or
agency is small but the impact for the neuroscience
community is signi¢cant. An expanded participation by
agencies and contributors outside of traditional pathways
as well as the potential for generating new appropriations
based on interest in this international e¡ort, will, we
hope, result in the creation of systems such as the one
described in this report as well as others contemplated or
funded through the auspices of the Human Brain Project
in the USA, without detracting from traditional neuro-
scienti¢c funding.

The development of a probabilistic atlas and reference
system for the human brain is a formidable goal and one
that involves participation from many sites around the
world and investigators committed to the end product.
The creation of a probabilistic atlas of the human brain is
not an exercise in library science. It is a series of funda-
mental, hypothesis-driven experiments in merging math-
ematical and statistical approaches with morphological
and physiological problems posed with regard to the
nervous system. It will create new data and insights into
the organization of the human nervous system in health
and disease, its development and its evolution. When
successful, it will provide previously unprecedented tools
for organizing, storing and communicating information
about the human brain throughout development, matura-
tion, adult life and old age. It will be a natural prelude to
studies of patients with cerebral disorders and provide
the ¢rst mechanism by which phenotype^genotype^
behavioural comparisons can be made on a macroscopic
and microscopic level. These results will provide the ¢rst
insights into the structure^function organization of the
human brain across all structures and a wide range of
ages in large populations. Its design anticipates the conti-
nuing evolution in the quality, resolution and magnitude
of data generated by existing technologies that are used to
map the human brain and even anticipates that many
future technologies, unknown today, will be applicable
because the entire system is organized using the architec-
ture of the brain as its guiding principle. The result will
allow electronic experimentation and hypothesis genera-
tion, facilitated communication among investigators and
an objective way of assessing new information gleaned
either at scienti¢c meetings or through publications.
Developing such a system is an open-ended project with
constant evolution, improvement and expansion both in
the numbers of subjects included and the range of attri-
butes associated with each. The results should be far more
than a data structure and organizational system. Rather,
the system should provide new insights and new opportu-
nities for neuroscientists to use data from their own
laboratories as well as others to make progress in under-
standing human brain function in health and disease
more rapidly, e¡ectively and e¤ciently.
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